
INTEGRATION, the VLSI journal 101 (2025) 102337 

A
0

Contents lists available at ScienceDirect

Integration, the VLSI Journal

journal homepage: www.elsevier.com/locate/vlsi

SEAM: A synergetic energy-efficient approximate multiplier for application
demanding substantial computational resources✩

Youngwoo Jeong, Joungmin Park, Raehyeong Kim, Seung Eun Lee ∗

Department of Electronic Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea

A R T I C L E I N F O

Keywords:
Approximate multiplier
Energy-efficient computing
Low power
Convolutional neural network
Fuzzy logic

A B S T R A C T

Approximate computing constitutes a paradigm in which accuracy is exchanged for enhanced energy efficiency
when contrasted with conventional computing methodologies. This approach has been devised to address
the escalating demand stemming from the rapid expansion of application systems. This paper proposes an
approximate multiplier for systems with heavy computational load. By amalgamating the attributes of a
Dynamic range unbiased multiplier (DRUM) with an Approximate wallace tree multiplier (AWTM), we have
devised a Synergetic energy-efficient approximate multiplier (SEAM) aimed at mitigating the occurrence of
worst-case errors inherent in AWTM. The SEAM was analyzed for circuit area and power consumption using
Design Compiler with Synopsys GPDK 32 nm. Experimental results demonstrated that SEAM achieved up to
80.46% reduction in circuit area and 82.6% reduction in power consumption compared to a precise multiplier.
Furthermore, compared to DRUM, SEAM showed a 15.55% reduction in circuit area and 45.73% reduction
in power consumption. In order to validate the feasibility of the proposed approximate multiplier, the circuit
was implemented on a Field-programmable gate array (FPGA) and applied to a fuzzy logic-based pathfinding
algorithm and a Convolutional neural network (CNN) accelerator. For the pathfinding algorithm, most error
metrics of the SEAM showed similar values to the DRUM. Moreover, when applied to the CNN accelerator
and experimented with the CIFAR-10 dataset and MNIST dataset, the proposed multiplier exhibited identical
precision, recall, and F1 score values. Despite applying SEAM, we achieved a maximum 3.1% increase in
classification metrics for a specific case. These results indicate the significant potential of the SEAM in reducing
the area of overall system while minimizing errors.
1. Introduction

The advancements of the semiconductor industry have led to rapid
progress in Artificial intelligence (AI), including machine learning and
Convolutional neural network (CNN), with widespread applications
across various systems [1,2]. As algorithms of AI become increasingly
sophisticated, they show a significant improvement in overall accu-
racy [3,4]. However, the growing complexity of algorithms and the
escalating demand for throughput have led to a need for additional
hardware resources [5,6]. This surge in demand has driven the con-
tinuous evolution of computing capabilities, accelerating the progress
of high-performance processors, dedicated circuits, and application
system architectures [7,8]. These demands increasingly require more
computing power, thereby emphasizing the importance of low-power
and energy efficiency in circuits and systems.

✩ This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the ITRC (Information Technology Research Center) support program
(IITP-2024-RS-2022-00156295) supervised by the IITP (Institute for Information & Communications Technology Planning & Evaluation).
∗ Corresponding author.
E-mail address: seung.lee@seoultech.ac.kr (S.E. Lee).

The imperative for energy efficiency has become prominent due
to the substantial environmental and economic impact of power con-
sumption in computing [9,10]. Traditional computing methodologies,
especially in arithmetic operations like multiplication and division,
often impose a significant energy burden as they aim for absolute
accuracy. The standardized nature of these operations limits the extent
to which optimization can significantly reduce circuit size and power
consumption.

In response to this trend, edge computing has emerged, involv-
ing the offloading of certain computations from the cloud to edge
devices [11]. However, edge devices face greater hardware resource
constraints compared to the cloud devices. Therefore, strategies such
as adopting hardware-friendly neural networks and algorithms such
as Binary neural network (BNN) or K-nearest neighbor (k-NN), which
https://doi.org/10.1016/j.vlsi.2024.102337
Received 13 May 2024; Received in revised form 3 September 2024; Accepted 15 D
vailable online 30 December 2024 
167-9260/© 2024 Published by Elsevier B.V. 
ecember 2024

https://www.elsevier.com/locate/vlsi
https://www.elsevier.com/locate/vlsi
https://orcid.org/0000-0003-3817-4383
mailto:seung.lee@seoultech.ac.kr
https://doi.org/10.1016/j.vlsi.2024.102337
https://doi.org/10.1016/j.vlsi.2024.102337


Y. Jeong et al. Integration 101 (2025) 102337 
Fig. 1. Difference between conventional computing and approximate computing.

simplify computations, have been introduced to reduce resource us-
age [12,13]. Despite these efforts, the demand for high-performance
CNN remains significant.

To address the need for energy-efficient neural networks, approxi-
mate computing has emerged as a promising solution. This innovative
paradigm originates from the recognition that not all applications
require precise computations. Fig. 1 illustrates the distinction between
conventional and approximate computing, emphasizing intentional im-
precision in computational tasks. The focus is on strategically balancing
the trade-off between accuracy and resource consumption [14,15].
By allowing controlled levels of error in calculations, approximate
computing aims to optimize energy efficiency without compromising
the essential functionality of diverse applications.

Approximate computing has found applications that tolerate er-
rors or require high performance, such as image processing, artificial
intelligence, mobile devices, IoT devices, and real-time processing sys-
tems [16–20]. These systems prioritize decreasing power consumption
and increasing and energy efficiency by allowing for errors and noise
that are imperceptible to humans. The benefits of approximate comput-
ing lie in its ability to cater to error-tolerant applications without sig-
nificantly compromising functionality, making it a valuable approach
in various domains.

In this paper, we propose a Synergetic energy-efficient approximate
multiplier (SEAM) with a focus on analyzing the feasibility of the
proposed circuit when implemented in multiplication and applied to
specific applications. The contributions of this paper are outlined as
follows:

• We introduce a multiplier that synergistically combines the char-
acteristics of two existing approximate multipliers: the Dynamic
ranged unbiased multiplier (DRUM) and the Approximate wallace
tree multiplier (AWTM). This unique integration leverages the
error resilience of DRUM and the structural efficiency of AWTM,
resulting in a hybrid approach that significantly reduces the
circuit area and power consumption while maintaining accuracy.
This integration is not a straightforward combination but a care-
fully designed methodology that addresses the limitations of each
individual multiplier while enhancing overall performance.

• The proposed SEAM is compared with other state-of-the-art ap-
proximate multipliers. A detailed analysis of circuit area and
2 
power consumption is performed using Design Compiler, demon-
strating that SEAM achieves a 80.46% reduction in circuit area
and a 82.6% reduction in power consumption compared to tra-
ditional multipliers. These improvements are achieved without
compromising accuracy, making SEAM highly suitable for energy-
constrained environments.

• The proposed approximate multiplier is applied to two specific
application systems: CNN-based image processing and a pathfind-
ing algorithm based on fuzzy logic. Error rates for these appli-
cation systems are analyzed to assess the viability of the pro-
posed multiplier. The results demonstrate significant improve-
ments in performance and energy efficiency compared to an
accurate multiplier, highlighting the practical effectiveness of
SEAM in real-world applications.

2. Related work

2.1. Evaluation metrics of approximate computing

The most fundamental performance evaluation metrics for approx-
imate computing are Error rate (ER) and Error distance (ED) [21].
ER represents the probability of errors occurring, while ED indicates
the difference between the accurate value and the approximate value.
When expressing the accurate value as A and the approximate value as
A’, ED is calculated as the sum of absolute differences. Relative error
distance (RED) expresses the relative difference between the accurate
and approximate values, calculated as the sum of absolute differences
divided by the accurate value. Typically, Relative error (RE), expressed
as a percentage, is favored over RED, calculated as RE = 𝑅𝐸 𝐷 × 100.
When comparing results, if ED is equal, RE becomes a more crucial
performance metric in approximate computing due to its tendency to
show larger RE for smaller A values [22]. In experiments involving
multiple scenarios, metrics utilizing ED and RED, such as Mean error
distance (MED), Mean relative error distance (MRED), Mean squared
error (MSE), and Root mean squared error (RMSE), are employed [23].
Eqs. (1), (2), (3), and (4) represent these calculations, with P(ED𝑖) and
P(RED𝑖) denoting the probabilities of ED𝑖 and RED𝑖 occurrences.

𝑀 𝐸 𝐷 =
𝑛
∑

𝑖=1
𝐸 𝐷𝑖 × 𝑃 (𝐸 𝐷𝑖) (1)

𝑀 𝑅𝐸 𝐷 =
𝑛
∑

𝑖=1
𝑅𝐸 𝐷𝑖 × 𝑃 (𝑅𝐸 𝐷𝑖) (2)

𝑀 𝑆 𝐸 =
𝑛
∑

𝑖=1
𝐸 𝐷2

𝑖 × 𝑃 (𝐸 𝐷𝑖) (3)

𝑅𝑀 𝑆 𝐸 =
√

𝑀 𝑆 𝐸 (4)

Absolute value-based metrics are also utilized. Mean absolute error
(MAE) and Mean absolute percentage error (MAPE) are metrics that
consider the absolute values of errors and their percentage, respec-
tively [24]. These metrics, by not ignoring the magnitude of errors,
serve as robust measures of prediction accuracy. Mean percentage error
(MPE) is derived from MAPE but without absolute values. MPE can
be positive or negative, indicating whether the prediction is larger or
smaller than the actual value. While MPE can be useful for evaluating
relative accuracy, it is recommended to use it in conjunction with other
metrics in cases where the direction of the error is crucial. Eqs. (5), (6),
and (7) depict the calculations for these three metrics. In the context
of MAE, MAPE, and MPE, ‘n’ represents the number of samples. These
equations utilize 𝑁 to denote the total number of data points or samples
used to compute the respective metrics.

∑𝑛
𝑖=1 |𝐴𝑖 − 𝐴′

𝑖 |
𝑀 𝐴𝐸 =
𝑛

(5)



Y. Jeong et al.

C

i
a
s
c
t

r

a

a
e
h
S
t
s
c

s

i
e
c
t

I

t
i
e
a
m
i
g
w
d
m

i

f

m
E
t
d
u

o

d

Integration 101 (2025) 102337 
𝑀 𝐴𝑃 𝐸 = 100
𝑛

× |

∑𝑛
𝑖=1 𝐴𝑖 − 𝐴′

𝑖
𝐴𝑖

| (6)

𝑀 𝑃 𝐸 = 100
𝑛

×
∑𝑛

𝑖=1 𝐴𝑖 − 𝐴′
𝑖

𝐴𝑖
(7)

Furthermore, Worst-case error (WC-Error) and Worst-case relative
error (WCR-Error) are considered, particularly in systems sensitive to
large errors [25]. Eqs. (8) and (9) presents the calculations for these
metrics.

𝑊 𝐶 − 𝐸 𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥𝑛𝑖=1(𝐸 𝐷𝑖) (8)

𝑊 𝐶 𝑅 − 𝐸 𝑟𝑟𝑜𝑟 = 𝑚𝑎𝑥𝑛𝑖=1(𝑅𝐸 𝐷𝑖) (9)

Additionally, circuit implementation using Electronics design au-
tomation (EDA) tools and analysis of area and power consumption are
performed [26,27]. For instance, circuits are synthesized using 28 nm

MOS, 32 nm GPDK, 45 nm open-source NanGate, and the results are
compared and analyzed to evaluate the performance of approximate
computing circuits. As the process and settings significantly impact
all experimental outcomes, conducting experiments with the same
configuration is crucial for proper comparisons.

The evaluation of approximate arithmetic circuits is challenging
with a single metric. Therefore, a comprehensive evaluation using
multiple metrics is essential to thoroughly assess the performance of
circuit from various perspectives. This multifaceted evaluation allows
for a more accurate understanding of the performance of approximate
arithmetic circuits and enhances their utility in real-world applications.

2.2. Approximate multiplier

S. Abed proposed the Approximate wallace tree multiplier (AWTM)
[28]. The conventional Wallace tree multiplier (WTM) encounters crit-
cal path delays in columns where all 8 bits need to be added during
n 8×8 multiplication. To address this issue, the paper introduces a
eparate carry-in preconsumption circuit. Additionally, to reduce cir-
uit size, the proposed multiplier accurately computes only the lower
wo bits while fixing the intermediate bits to one. The upper bits

are computed as accurately as possible using imprecise carry values.
Moreover, the operation divides one multiplier into seven multipliers,
efficiently reducing circuit size relative to error rates. Simulations for
4×4, 8×8, and 16×16 multipliers yielded an average accuracy ranging
from 99.85 to 99.965, with circuit area and power reduced by up to
41.96.

S. Venkatachalam presented an approximate multiplier based on the
adix-4 booth multiplier [29]. They reconstructed the K-map by flipping

four values in the conventional booth encoding-based K-map. The
proposed multiplier further reduced circuit size by using only OR gates,
instead of adders, for the lower eight bits in the reconstructed partial
product matrix. Experimentation on the 8×8 multiplier demonstrated a
41% reduction in circuit area and 49% decrease in power consumption.
Finally, the MRED for the proposed multiplier was measured at 6.75 ×
10−2.

On the other hand, S. Hashemi proposed the DRUM for approximate
pplication systems [30]. The DRUM employs an accurate multiplier

but reduces the input bit count to decrease the overall circuit area.
For instance, when performing 8 × 8 multiplication, the proposed
method involves performing the approximation operation using only
 4 × 4 multiplier. Initially, the Leading one detector (LOD) is used to
xtract the bits based on the leftmost one as the reference, as numbers
ave more significant values towards the Most significant bit (MSB).
ubsequently, accurate multiplication is performed using the extracted
wo numbers, and the final approximate result is obtained by left-
hifting the result by the truncated bit count. The proposed multiplier
an control the error rate by adjusting the number of extracted bits.
 c

3 
Experimental results for extraction bit counts from four bits to nine bits
howed a maximum average absolute error rate of six.

Additionally, several other approximate multipliers have been stud-
ed, including under-designed multiplier, broken-array multiplier,
rror-tolerant multiplier, inaccurate multiplier, and approximate
ompressor-based multiplier. Each of these introduces unique strategies
o achieve approximate multiplication in various scenarios [31].

2.3. Application

Approximate computing has been primarily applied to systems that
are not highly sensitive to errors due to its characteristic trade-off
between accuracy and circuit complexity. Numerous studies have ex-
plored the application of approximate computing in image processing.
n [32], the preapproximation method, which has a uniform distribu-

tion and noise with an average of zero, was proposed. The study applied
he preapproximation method to edge detection and Gaussian filtering
n image processing. The experiments on edge detection verified the
fficient operation for most images when using a specific bit length,
ssessed through structural similarity and peak signal-to-noise ratio
etrics. Although there could be a difference of one or two bits

n extreme cases, it was considered acceptable since the model was
enerated based on the probability distribution. Similar experiments
ere conducted for Gaussian filtering, visually confirming minimal
ifferences between the two cases, validating the feasibility of proposed
ultiplier.

Research has also been conducted on applying approximate comput-
ng to JPEG compression, where C. K. Jha [33] proposed Floating point

approximate dividers (FPADs) for IEEE 754 floating-point operations.
Since the mantissa division in IEEE 754 dividers constitutes 92% of
the area and 95% of the delay, and introducing approximations to the
exponent or sign bits would lead to significant errors, the mantissa di-
vision was approximated using shift and addition operations. Applying
FPADs to the quantization step of the JPEG compression algorithm, the
results were compared with existing approximate dividers, achieving
2.84× power-delay product gain while maintaining the same error rate
for 512 × 512 grayscale image.

In [34], a probabilistic full-adder, which modified the conventional
ull-adder, was proposed, and a probabilistic multiplier applying this

adder to an array multiplier was introduced. Results from applying
probabilistic and conventional multipliers to image sharpening showed
visually indistinguishable images. Furthermore, the proposed multi-
plier required only 50% of the energy compared to the conventional

ultiplier, demonstrating 2× energy saving with similar performance.
xperimental results on landscape images showed more noise compared
o other result images. This was attributed to landscape images being
ominated by low-frequency components, and it was expected that
sing more than 50% energy would reduce the noise.

Moreover, research has been conducted on applying approximate
computing to deep learning [35,36]. In the context of deep learning,
the focus has been on reducing the operations required by approxi-
mating multiplication and division, rather than replacing them with
approximate multipliers and dividers [37,38]. In [35], an end-to-end
trainable Neural Network named AXNet was proposed by merging
an approximator and a predictor for the first hidden layer. However,
coordinating these two networks is challenging, and separately training
them with different optimization goals takes a considerable amount of
time. AXNet achieved a 50.7% reduction in training time compared
to existing approximate computing frameworks. Research has also ex-
plored applying approximate computing circuits to Neural Network
accelerators [39].

The power line modulation technique, intentionally altering the
utput for specific input vectors, was applied to multiplication and

addition units. The Neural Network accelerator achieved 1.78 − 2.67× re-
uction in energy consumption for the TSMC 65 nm process. Hardware
haracteristics of the exact Neural functional unit (NFU) and inexact



Y. Jeong et al. Integration 101 (2025) 102337 
Fig. 2. Approximate wallace tree multiplication.

NFU were analyzed, showing area and power energy measurements
of 0.66 mm2 and 0.28 mm2, 66.37 mW and 32.86 mW, and 56.91nJ
and 28.18nJ, respectively. Finally, experimental results demonstrated
that even with approximately 42% less area and 50% less energy, the
inexact NFU still achieved 97.1% accuracy compared to the exact NFU.

3. Architecture

A new approximate multiplier is proposed by combining the fea-
tures of two existing approximate multipliers, AWTM and DRUM. First,
Fig. 2 illustrates the multiplication method of AWTM. When the inputs
are two 8-bit numbers, the least significant two bits are accurately
computed using a half adder, while the middle six bits are fixed to one
without computation. The upper 8-bits are approximated by performing
an OR operation on the lower bits, and these values are precisely
calculated using a half adder and a full adder. This approach ensures
accuracy in the lower 2-bits, inaccuracy in the middle 6-bits, and a
certain level of accuracy in the upper 8-bits. Since the higher bits are
more important than the lower bits in numbers, this method efficiently
reduces circuit area and power compared to traditional WTM by elim-
inating the full adders and half adders required for the computation of
the middle bits.

On the other hand, DRUM is an approximate multiplier that extracts
an arbitrary k-bit from the MSB to reduce multiplication and later
corrects the result through shift operations. By adjusting the value
of k according to the application, it is possible to efficiently balance
the trade-off between error distance and circuit area in the circuit.
However, since an accurate multiplier must be used, increasing k results
in a larger area for the approximate multiplier.

SEAM is a mutually complementary approximate multiplier that
combines LOD of DRUM with AWTM. The LOD is a circuit that iden-
tifies the position of the largest one in the input of the multiplication.
Passing through the LOD ensures that the extracted number always has
MSB set to one. Using this number as the input for AWTM increases the
likelihood that the MSBs of the two input numbers in AWTM are fixed
to one. This significantly reduces the occurrence of Worst-Case Error in
the computation results of AWTM. The proposed multiplier, like DRUM,
also has the potential for development by adjusting the k-bit to regulate
the trade-off relationship between Error Rate and Area.

Fig. 3 illustrates the architecture of the proposed SEAM. Similar to
the existing DRUM, the circuit consists of steering logic and arithmetic
logic for flexibly extracting specific bits. The steering logic includes
a type converter, LOD, truncator, and barrel shifter. Initially, the in-
put signed values are converted to unsigned values through the type
converter since the final multiplication is performed as an unsigned
operation. LOD detects the one closest to the MSB for both input values,
and if no one is detected, the final result is fixed to zero. The truncator
generates a new number by cutting the desired number of bits based
on this value. Then, by replacing the LSB of the two values with one,
they are fed into the AWTM. The multiplication result is generated by
4 
Fig. 3. Architecture of the synergetic energy-efficient approximate multiplier.

Fig. 4. Flow of the synergetic energy-efficient approximate multiplier. (a) Input value
(b) Approximated input (c) Pre-shift operation result of DRUM (d) Pre-shift operation
result of SEAM (e) Exact result (613,73810) (f) Result of DRUM (616,22410) (g) Result
of AWTM (720,89010) (h) Result of SEAM (622,49610).

left-shifting the output of AWTM by the previously truncated bits, and
the final result is extracted in signed form through the type converter.

Fig. 4 depicts the operational sequence of SEAM. Initially, spe-
cific bits are extracted for both input numbers to generate the inputs
Fig. 4(b) for DRUM and SEAM, and the LSB is set to one. This ensures
that the MSBs of the inputs for AWTM in SEAM are always set to one,
minimizing the ER of the multiplier. While there is still a risk of WC-
Error if the two numbers in input Fig. 4(a) are less than eight bits,
the probability of WC-Error occurring significantly decreases in 32-bit
operations, especially in cases where the numbers are in Fixed-point
unit (FXU). Fig. 4(c) represents the accurate result of the operation
for Fig. 4(b), and (d) illustrates the result of operating Fig. 4(b) with
AWTM, showing that all intermediate bits are fixed to one. Finally,
Fig. 4(e) to (h) present the final results of each multiplier.



Y. Jeong et al.

p

a
c
f
m
a
c
n
o
c
t
o
b
a
m
a

a

C
r

t
s
t
a
t
b

d
b

e

3

S
b
c

E
c
M

c
w
s

m

e
f
f
I
c
o

Integration 101 (2025) 102337 
Table 1
Synthesis results of the 32-bit floating point unit and the SEAM-based 32-bit floating
oint unit.
Multiplier Area [μm2] Power [mW]

Floating-point unit 5417 378.29
SEAM 1929 135.41

To investigate the inherent error rate of the proposed SEAM, we
nalyzed the MRED and WCR-Error for 65,536 cases in 16-bit multipli-
ation operations using a Python simulator. The measured values were
ound to be 0.99 and 1.00. In contrast, the MRED of other approximate
ultipliers analyzed in Fig. 22 of [40] is generally measured between 0

nd 0.2. The reason for the higher MRED of SEAM is due to its specific
haracteristics. This multiplier has a clear WC-Error. When both input
umbers are one, the result is fixed at 254. In other words, regardless
f the input, the result is always calculated as 254 or higher. This
an lead to significant errors in some operations, as the operation for
he identity element one does not work accurately. This issue not only
ccurs for 8-bit operations but also becomes more critical as the input
its increase. Consequently, the measured MRED and WCR-Error for
ll operations are inevitably higher compared to other approximate
ultipliers. However, if this error does not have a significant impact

t the application level, then the value of SEAM is justified.

4. Experiment

When evaluating the performance of approximate circuits, it is
crucial to thoroughly analyze the trade-off between energy-efficiency
nd accuracy. Therefore, in this paper, we not only implemented the

proposed multiplier with Verilog HDL, but also applied SEAM to a
NN accelerator and a fuzzy logic-based pathfinding algorithm by
eplacing all of the multipliers to SEAM. Finally, we compared area,

power, energy, and accuracy with an accurate multipliers and other
approximate multipliers in the same environment.

4.1. Energy-efficiency

To assess the energy-efficiency of the proposed multiplier, we syn-
hesized the proposed multiplier using Design Compiler with the Synop-
ys 32 nm GPDK. First of all, we conducted experiment for comparing
he energy-efficiency when applying SEAM to a floating-point unit. We
imed to examine the extent of area and power reduction compared
o the floating-point unit. A comparison was made between a 32-
it floating-point unit without SEAM and a unit with SEAM applied.

Table 1 presents the synthesis results. As a result, the circuit area
ecreased by 64.39%, and the total power consumption was decreased
y 64.2%.

Additionally, we compared SEAM with other approximate multipli-
rs. Table 2 presents the analysis results of the proposed multiplier,

DRUM with various k values, and WTM. All multipliers were based on
2-bit FXU consisting of a 22-bit integer part and a 10-bit fractional

part. By analyzing not only energy but also Energy delay product
(EDP) and the Product of power, delay, and area (PDA), we aimed to
comprehensively evaluate the performance of circuits considering the
balance. Lower values in all metrics generally indicate smaller circuits
 m

5 
and higher energy efficiency. The circuit area of SEAM was 80.46%
smaller than the WTM and at most 55.18% smaller than the DRUM,
showing similar values to DRUM6. The power consumption of SEAM
was also measured to be 82.6% smaller than the WTM and at most
87.1% smaller than the DRUMs. In terms of critical path delay, the
WTM exhibited the lowest value, while SEAM showed 68% higher than
the WTM. This was speculated to be due to the use of mux, which
is not typically used in general multipliers. Regarding EDP and PDA,
EAM achieved the lowest values. Overall, SEAM performed slightly
etter than DRUM6 and showed 47.62% and 94.96% performance gains
ompared to the WTM. The proposed 32-bit FXU based SEAM was

applied to embedded fuzzy logic controller to analyze its accuracy.

4.2. Accuracy

4.2.1. Convolutional Neural Network (CNN)
The SEAM was applied to the CNN accelerator to analyze its accu-

racy. In this experiment, the CNN accelerator proposed by J. Park was
adopted, and experiments were conducted on the CIFAR-10 and MNIST
datasets [41,42]. The CIFAR-10 dataset consists of images categorized
into 10 diverse classes. Each image has a size of 32 × 32 pixels, with
each pixel composed of RGB values. The dataset comprises a total of
60,000 images, with 6000 images per category, divided into 50,000
training data and 10,000 test data. Additionally, the CNN we used has
three convolutional layers followed by ReLU and Maxpooling, and two
fully connected (FC) layers. All convolution operations use a fixed 3 × 3
filter with a stride of 1. The input–output channel relationships for
the convolution layers are: (1, 16) → (16, 16) → (16, 8), and for the FC
layers: (72, 64) → (64, 10). The performance of CNN varies depending
on the dataset it is experimented on. For instance, experimenting on
entirely different categories such as dogs and airplanes may yield high
performance, whereas experimenting on similar categories such as dogs
and cats may result in lower performance. Therefore, the aim of this
experiment was to measure performance across various categories.

There were seven scenarios as depicted in Table 3. Case A to Case
F are categories in the CIFAR-10 dataset that group data with similar
features, such as machinery and animals. Meanwhile, Case D and Case
 involve adding entirely different categories to two existing similar
ategories. Finally, Case G focuses solely on experimenting with the
NIST dataset.

In this experiment, input images were represented in a 32-bit
floating-point format with values ranging between −1 and 1 to fa-
ilitate smooth inference by the CNN accelerator. For input images
ith three RGB channels, models corresponding to each classification

cenario were first trained, and then the parameters were applied to
the CNN accelerator for inference. The CNN accelerator embeds a
convolution accelerator based on systolic array architecture, enabling

ore efficient convolution operations [41]. The systolic array structure
is crucially utilized in the accelerator as it is well-suited for accel-
rating convolution operations. Additionally, the accelerator includes
unctionalities such as zero-padding, max-pooling, as well as activation
unctions like sigmoid and ReLU. It performs computations based on the
EEE-754 floating-point format. The CNN accelerator consists of pro-
essing elements that perform multiplication and addition operations,
rganized in a systolic array architecture, with many floating-point
ultiplication units included. We conducted comparative experiments
Table 2
Synthesis results of the various approximate multipliers with Design Compiler.
Multiplier Area Power Delay Energy EDP PDA

[μm2] Ratio [mW] Ratio [ns] Ratio [nJ] Ratio [ns × μJ] Ratio [μJ × μm2] Ratio

Wallace 10,563 5.12 383.14 5.75 24.34 1.00 9.33 3.42 0.23 2.03 3.57 19.65
DRUM6 2098 1.02 76.50 1.15 38.98 1.60 2.98 1.09 0.12 1.04 0.23 1.25
DRUM8 2444 1.18 122.82 1.84 39.95 1.64 4.91 1.80 0.20 1.76 0.60 3.31
DRUM16 4605 2.23 516.55 7.75 60.7 2.49 31.35 11.49 1.90 17.05 16.20 89.07
SEAM 2064 1.00 66.66 1.00 40.92 1.68 2.73 1.00 0.11 1.00 0.18 1.00



Y. Jeong et al.

b
a
p
t
p
r
c
t
a
i
f
U
c
i
p
i
p
s

o
A
S
c
a
S
t
m
t
a
f
n
T
o

i

a
L
f
a
u

n
S
t
e
c

Integration 101 (2025) 102337 
Table 3
Scenarios of the experiment.

Case Category

Case A Airplane, Ship
Case B Cat, Dog
Case C Airplane, Automobile
Case D Airplane, Automobile, Cat
Case E Airplane, Automobile, Frog
Case F Airplane, Automobile, Ship, Truck
Case G MNIST dataset

by introducing or not introducing SEAM into these multipliers. The
experimental environment includes the transmission of input image
data, layer information, and commands to the CNN accelerator, along
with a data transceiver and CNN accelerator for receiving results. The
CNN accelerator is implemented on the Cyclone IV 4CE115C8G model,
a field-programmable gate array.

For the evaluation between the CNN accelerator and the SEAM-
ased CNN accelerator, accuracy, precision, recall, and F1 score were
nalyzed. To understand these metrics, it is essential to explain True
ositive (TP), True negative (TN), False positive (FP), and False nega-
ive (FN). TP represents instances where the model correctly predicts
ositive outcomes, accurately identifying actual positive instances. TN
efers to instances where the model correctly predicts negative out-
omes, accurately identifying actual negative instances. FP occurs when
he model incorrectly predicts positive outcomes, falsely identifying
n instance as positive when it is actually negative. FN describes
nstances where the model incorrectly predicts negative outcomes,
alsely identifying an instance as negative when it is actually positive.
sing these four values, accuracy, precision, recall, and F1 score are
omputed. Accuracy measures the proportion of correctly classified
nstances among all instances. Precision represents the ratio of correctly
redicted positive samples among the predicted positive classes. Recall
ndicates how accurately the model detects positives among the actual
ositive classes. F1 score is the harmonic mean of precision and recall,
ummarizing the performance of model in a single number. Eqs. (10),

(11), (12), and (13) represent the calculation formulas for these four
metrics.

In the analysis of the performance metrics presented in Table 4,
applying SEAM to the CNN shows that the results are similar to those
btained with exact multiplier and DRUM across various cases. For case
, case C, and case G, the accuracy, precision, recall, and F1 score for
EAM are nearly identical to those of the exact multiplier. In case B and
ase E, while there are slight variations in accuracy, precision, recall,
nd F1 scores between exact multiplier and SEAM. Case D shows that
EAM slightly improves recall compared to the exact multiplier, but
he accuracy, precision, and F1 score remain similar to those of exact
ultiplier and DRUM. For case F, the metrics for SEAM are close to

hose of exact multiplier and DRUM. The slight variations observed
re not substantial enough to indicate a significant impact on per-
ormance. Overall, SEAM demonstrates performance metrics that are
early indistinguishable from those of the exact multiplier and DRUM.
he differences are minimal, showing that SEAM maintains high levels
f accuracy, precision, recall, and F1 score while potentially offering
6 
other benefits like energy efficiency and hardware simplification.

𝐴𝑐 𝑐 𝑢𝑟𝑎𝑐 𝑦 = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝐹 𝑃 + 𝐹 𝑁 + 𝑇 𝑁 (10)

𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 (11)

𝑅𝑒𝑐 𝑎𝑙 𝑙 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁 (12)

𝐹1 𝑠𝑐 𝑜𝑟𝑒 = 2 × 𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐 𝑎𝑙 𝑙
𝑃 𝑟𝑒𝑐 𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐 𝑎𝑙 𝑙 (13)

To further compare with other approximate multipliers, we ana-
lyzed delay, power, and area using the results from Table 2 in relation
to the findings from Fig. 23 of [40]. For this comparison, the synthesis
result of DRUM with UMC 40 nm was employed as the baseline, and
the results of SEAM were normalized with Synopsys 32 nm GPDK ac-
cordingly. The estimated reduction ratios for SEAM in the experimental
environment of the referenced paper are 2% for delay, 45% for power,
and 70% for area. These ratios correspond to the 11th, 3rd, and 4th
positions among the 16 approximate multipliers tested in that study.
Despite the relatively high reduction ratios, the error metrics of SEAM,
compared to those with higher reduction ratios, show that metrics of
SEAM are reasonable given the context of the higher MRED observed
in other approximate multipliers.

4.2.2. Fuzzy logic based pathfinding algorithm
To validate the feasibility of SEAM for fuzzy logic, a pathfind-

ng algorithm was adopted [44,45]. This algorithm was proposed for
four-wheel-drive autonomous mobile robots and encompasses all com-
ponents of fuzzy logic. In fuzzy logic, typically all arithmetic operations
are included. Therefore, to compare error-related metrics, not only
approximate multipliers but also approximate dividers were applied,
and the results were comprehensively analyzed. The approximate di-
viders used include a 32-bit FXU, [43] with k values of 4 and 8,
nd an approximate divider applying the goldschmidt method with
ook-up table (LUT). We developed a Python simulator replicating the
unctionality of the pathfinding algorithm with approximate multiplier
nd approximate dividers. A total of 46,656 input data points were
tilized to analyze and Table 5 shows the values of error-related

metrics included MAE, MSE, RMSE, MRED, MAPE, MPE, WC-Error, and
WCR-Error.

Table 5 showed significant variations in metrics based on the type of
divider used. This indicates that errors in the fuzzification at the begin-
ing of fuzzy logic have a substantial impact on the entire system. The
EAM consistently demonstrated lower error metric values compared
o DRUM6. When used with FXU divider 32 × 32, it showed lower
rror-related metric values for all metrics except MPE. Moreover, when
ompared to DRUM8, SEAM along with some approximate divider,

exhibited lower values for some metrics. When error-related metrics
were compared overall, the comprehensive metric of DRUM16 was
found to be the most superior. However, when considering the energy
efficiency of the circuit and conducting a comprehensive evaluation,
SEAM exhibited the most superior error-related metrics among circuits
with similar energy efficiency. Therefore, the feasibility of SEAM has
been validated.
Table 4
Classification metrics of CNN, DRUM-CNN, SEAM-CNN on the CIFAR-10 dataset.
Cases Accuracy [%] Precision [%] Recall [%] F1 score [%]

Exact DRUM SEAM Exact DRUM SEAM Exact DRUM SEAM Exact DRUM SEAM

Case A 80.1 80.0 80. 1 80.1 80.0 80.1 80.1 80.0 80.1 80.1 80.0 80.1
Case B 70.4 70.8 70.2 73.4 73.7 73.4 70.3 70.7 70.1 71.8 72.2 71.7
Case C 94.3 94.2 94.0 94.3 94.2 94.0 94.3 94.2 94.0 94.3 94.2 94.0
Case D 85.3 84.8 85.0 85.6 85.2 85.5 85.5 88.8 88.6 85.6 85.1 85.4
Case E 89.3 88.9 88.7 89.6 89.2 89.1 89.2 88.8 88.6 89.4 89.0 88.9
Case F 71.5 72.1 71.7 72.4 72.9 72.5 71.4 72.0 71.6 71.9 72.4 72.0
Case G 97.4 97.4 97.3 97.4 97.4 97.3 97.3 97.3 97.2 97.4 97.4 97.3



Y. Jeong et al.

m
m
c

t

m
t
r
S
i
l
p
i
a
s
c
o

W
C
t
R
S

c
i

Integration 101 (2025) 102337 
Table 5
Error-related metrics when applying various approximate multipliers and approximate dividers to the fuzzy logic-based pathfinding algorithm.
Divider Multiplier MAE RMSE MAPE MPE WCR-Error

% Ratio % Ratio % Ratio % Ratio % Ratio

FXU 32 × 32

DRUM6 1.09 4.74 1.65 4.56 10.02 1.89 −58.11 8.16 3.92 1.55
DRUM8 0.4 1.74 0.62 1.70 6.82 1.29 −7.12 1.00 2.54 1.01
DRUM16 0.23 1.00 0.36 1.00 5.29 1.00 9.81 −1.38 2.52 1.00
SEAM 0.78 3.39 1.06 2.94 9.13 1.73 −67.32 9.46 3.52 1.40

[43] (k = 4)

DRUM6 4.52 1.02 6.31 1.04 20.78 1.24 279.36 1.00 6.27 1.00
DRUM8 4.86 1.10 6.71 1.10 19.71 1.18 367.10 1.31 8.04 1.28
DRUM16 4.95 1.12 6.90 1.13 19.49 1.16 −397.50 −1.42 8.16 1.30
SEAM 4.42 1.00 6.08 1.00 16.73 1.00 298.66 1.07 8.02 1.28

[43] (k = 8)

DRUM6 1.77 1.79 2.81 1.81 18.59 1.80 −146.83 −6.07 10.20 1.47
DRUM8 0.99 1.00 1.55 1.00 10.73 1.04 −48.77 −2.01 7.65 1.10
DRUM16 1.05 1.06 1.56 1.01 10.32 1.00 24.21 1.00 6.93 1.00
SEAM 1.39 1.40 2.18 1.41 16.12 1.56 118.14 4.88 10.33 1.49

Gold. + LUT

DRUM6 1.13 4.19 1.63 4.05 10.40 1.94 57.33 14.16 3.94 1.57
DRUM8 0.43 1.59 0.63 1.58 6.30 1.18 9.87 2.44 2.53 1.01
DRUM16 0.27 1.00 0.40 1.00 5.36 1.00 4.05 1.00 2.51 1.00
SEAM 0.82 3.04 1.13 2.80 8.34 1.56 63.11 15.59 3.41 1.36
5. Conclusion

In this paper, we propose SEAM, a combination of two approx-
imate multipliers, DRUM, and AWTM. SEAM effectively reduces the
worst-case error factor of AWTM, minimizing the circuit size while

aintaining the values of error-related metrics. The proposed approxi-
ate multiplier was designed in Verilog HDL, and the feasibility of the

ircuit was validated through simulation and FPGA implementation.
When synthesized using Synopsys 32 nm GPDK, the proposed ap-

proximate multiplier exhibits circuit areas of 2,064 μm2. These figures
represent a reduction of 80.46% compared to accurate multipliers.
Additionally, a power consumption decrease of 82.6% was achieved.

The applicability of the approximate multiplier varies depending on
he application systems due to the different WC-Error of the multiplier.

Therefore, we verified the feasibility of the proposed approximate arith-
etic multiplier for two application systems. First, we applied SEAM to

he multiplication operation in the CNN accelerator and analyzed the
esults. The experiments on various scenarios of CIFAR-10 and MNIST,
EAM even showed higher values for precision, recall, and F1 score
n some cases. Next, when applying the proposed circuits to the fuzzy
ogic based pathfinding algorithm, SEAM was demonstrated superior
erformance in most error-related metrics compared to DRUM6. This
s a meaningful result, considering the similar circuit areas of DRUM6
nd SEAM. Furthermore, when compared to DRUM8, SEAM showed
imilar results in some metrics, indicating the minimal impact of worst
ase occurrence despite the reduced circuit area due to the application
f SEAM.

In conclusion, the proposed approximate arithmetic multiplier is not
only applicable to embedded fuzzy logic controller but also to other
application system. It is expected to be particularly efficient in systems
where some level of error tolerance is acceptable.

CRediT authorship contribution statement

Youngwoo Jeong: Conceived the study, Designed the experiments,
riting – original draft, Writing – review & editing. Joungmin Park:

onducted the experiments, Data collection and analysis, Execution of
he experiments, Writing – original draft, Writing – review & editing.
aehyeong Kim: Writing – original draft, Writing – review & editing.
eung Eun Lee: Supervised the project, Provided funding, Approved

the final manuscript, Writing – original draft, Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.
7 
Data availability

The data that has been used is confidential.

References

[1] D. Amuru, A. Zahra, H.V. Vudumula, P.K. Cherupally, S.R. Gurram, A. Ahmad,
Z. Abbas, AI/ML algorithms and applications in VLSI design and technology,
Integration 93 (2023) 102048.

[2] Y. Ma, Z. Wang, H. Yang, L. Yang, Artificial intelligence applications in the
development of autonomous vehicles: a survey, IEEE/CAA J. Autom. Sin. 7 (2)
(2020) 315–329.

[3] P. Jiang, D. Ergu, F. Liu, Y. Cai, B. Ma, A review of yolo algorithm developments,
Procedia Comput. Sci. 199 (2022) 1066–1073.

[4] E. Talpes, D.D. Sarma, G. Venkataramanan, P. Bannon, B. McGee, B. Floering,
A. Jalote, C. Hsiong, S. Arora, A. Gorti, et al., Compute solution for tesla’s full
self-driving computer, IEEE Micro 40 (2) (2020) 25–35.

[5] M.A. Talib, S. Majzoub, Q. Nasir, D. Jamal, A systematic literature review on
hardware implementation of artificial intelligence algorithms, J. Supercomput.
77 (2) (2021) 1897–1938.

[6] N. Gupta, Chapter one - introduction to hardware accelerator systems for
artificial intelligence and machine learning, in: S. Kim, G.C. Deka (Eds.),
Hardware Accelerator Systems for Artificial Intelligence and Machine Learning,
in: Advances in Computers, vol. 122, Elsevier, 2021, pp. 1–21.

[7] S. Venkataramani, V. Srinivasan, W. Wang, S. Sen, J. Zhang, A. Agrawal, M.
Kar, S. Jain, A. Mannari, H. Tran, et al., RaPiD: AI accelerator for ultra-low
precision training and inference, in: 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture, ISCA, IEEE, 2021, pp. 153–166.

[8] A. Skillman, T. Edso, A technical overview of cortex-m55 and ethos-u55: Arm’s
most capable processors for endpoint ai, in: 2020 IEEE Hot Chips 32 Symposium,
HCS, IEEE Computer Society, 2020, pp. 1–20.

[9] T. Khurshid, V. Singh, Energy efficient design of unbalanced ternary logic gates
and arithmetic circuits using CNTFET, AEU-Int. J. Electron. Commun. 163 (2023)
154601.

[10] S. Choi, J. Yang, G. Wang, Emerging memristive artificial synapses and neu-
rons for energy-efficient neuromorphic computing, Adv. Mater. 32 (51) (2020)
2004659.

[11] Y. Jeong, H.W. Oh, S. Kim, S.E. Lee, An edge AI device based intelligent
transportation system, 2022.

[12] H. Qin, R. Gong, X. Liu, X. Bai, J. Song, N. Sebe, Binary neural networks: A
survey, Pattern Recognit. 105 (2020) 107281.

[13] Y.H. Yoon, D.H. Hwang, J.H. Yang, S.E. Lee, Intellino: Processor for embedded
artificial intelligence, Electronics 9 (7) (2020) 1169.

[14] H. Baba, T. Yang, M. Inoue, K. Tajima, T. Ukezono, T. Sato, A low-power and
small-area multiplier for accuracy-scalable approximate computing, in: 2018 IEEE
Computer Society Annual Symposium on VLSI, ISVLSI, IEEE, 2018, pp. 569–574.

[15] G. Zervakis, S. Xydis, K. Tsoumanis, D. Soudris, K. Pekmestzi, Hybrid approxi-
mate multiplier architectures for improved power-accuracy trade-offs, in: 2015
IEEE/ACM International Symposium on Low Power Electronics and Design,
ISLPED, IEEE, 2015, pp. 79–84.

[16] J. Kim, W.S. Jeong, Y. Jeong, S.E. Lee, Parallel stochastic computing architecture
for computationally intensive applications, Electronics 12 (7) (2023) 1749.

[17] A. Ghosh, A. Raha, A. Mukherjee, Energy-efficient IoT-health monitoring system
using approximate computing, Internet Things 9 (2020) 100166.

http://refhub.elsevier.com/S0167-9260(24)00201-3/sb1
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb1
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb1
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb1
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb1
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb2
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb2
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb2
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb2
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb2
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb3
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb3
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb3
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb4
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb4
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb4
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb4
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb4
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb5
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb5
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb5
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb5
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb5
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb6
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb6
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb6
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb6
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb6
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb6
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb6
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb7
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb7
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb7
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb7
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb7
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb7
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb7
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb8
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb8
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb8
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb8
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb8
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb9
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb9
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb9
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb9
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb9
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb10
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb10
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb10
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb10
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb10
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb11
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb11
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb11
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb12
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb12
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb12
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb13
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb13
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb13
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb14
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb14
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb14
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb14
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb14
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb15
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb15
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb15
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb15
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb15
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb15
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb15
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb16
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb16
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb16
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb17
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb17
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb17


Y. Jeong et al. Integration 101 (2025) 102337 
[18] K. Roy, Approximate computing for energy-efficient error-resilient multimedia
systems, in: 2013 IEEE 16th International Symposium on Design and Diagnostics
of Electronic Circuits & Systems, DDECS, IEEE Computer Society, 2013, pp. 5–6.

[19] K. Roy, A. Raghunathan, Approximate computing: An energy-efficient computing
technique for error resilient applications, in: 2015 IEEE Computer Society Annual
Symposium on VLSI, IEEE, 2015, pp. 473–475.

[20] V. Pejović, Towards approximate mobile computing, GetMobile: Mob. Comput.
Commun. 22 (4) (2019) 9–12.

[21] S. Froehlich, D. Große, R. Drechsler, One method-all error-metrics: a three-stage
approach for error-metric evaluation in approximate computing, in: 2019 Design,
Automation & Test in Europe Conference & Exhibition, DATE, IEEE, 2019, pp.
284–287.

[22] C. Chen, J. Twycross, J.M. Garibaldi, A new accuracy measure based on bounded
relative error for time series forecasting, PLoS One 12 (3) (2017) e0174202.

[23] C. Xu, X. Wu, W. Yin, Q. Xu, N. Jing, X. Liang, L. Jiang, On quality trade-off
control for approximate computing using iterative training, in: Proceedings of
the 54th Annual Design Automation Conference 2017, 2017, pp. 1–6.

[24] Y. Mannepalli, V.B. Korede, M. Rao, Novel approximate multiplier designs
for edge detection application, in: Proceedings of the 2021 on Great Lakes
Symposium on VLSI, 2021, pp. 371–377.

[25] S. Froehlich, D. Große, R. Drechsler, Approximate hardware generation using
symbolic computer algebra employing grobner basis, in: 2018 Design, Au-
tomation & Test in Europe Conference & Exhibition, DATE, IEEE, 2018, pp.
889–892.

[26] Y. Wang, J. Deng, Y. Fang, H. Li, X. Li, Resilience-aware frequency tuning
for neural-network-based approximate computing chips, IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 25 (10) (2017) 2736–2748.

[27] Q. Zhang, Q. Xu, Approxit: A quality management framework of approximate
computing for iterative methods, IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 39 (5) (2017) 991–1002.

[28] S. Abed, Y. Khalil, M. Modhaffar, I. Ahmad, High-performance low-power
approximate wallace tree multiplier, Int. J. Circuit Theory Appl. 46 (12) (2018)
2334–2348.

[29] S. Venkatachalam, H.J. Lee, S.-B. Ko, Power efficient approximate booth multi-
plier, in: 2018 IEEE International Symposium on Circuits and Systems, ISCAS,
IEEE, 2018, pp. 1–4.

[30] S. Hashemi, R.I. Bahar, S. Reda, DRUM: A dynamic range unbiased multiplier
for approximate applications, in: 2015 IEEE/ACM International Conference on
Computer-Aided Design, ICCAD, IEEE, 2015, pp. 418–425.

[31] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, J. Han, A comparative evaluation
of approximate multipliers, in: 2016 IEEE/ACM International Symposium on
Nanoscale Architectures, NANOARCH, IEEE, 2016, pp. 191–196.
8 
[32] Y. Xiang, L. Li, S. Yuan, W. Zhou, B. Guo, Metrics, noise propagation models,
and design framework for floating-point approximate computing, IEEE Access 9
(2021) 71039–71052.

[33] C.K. Jha, K. Prasad, V.K. Srivastava, J. Mekie, FPAD: a multistage approximation
methodology for designing floating point approximate dividers, in: 2020 IEEE
International Symposium on Circuits and Systems, ISCAS, IEEE, 2020, pp. 1–5.

[34] M.S. Lau, K.-V. Ling, Y.-C. Chu, Energy-aware probabilistic multiplier: design
and analysis, in: Proceedings of the 2009 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, 2009, pp. 281–290.

[35] Q. Zhang, T. Wang, Y. Tian, F. Yuan, Q. Xu, Approxann: An approximate
computing framework for artificial neural network, in: 2015 Design, Automation
& Test in Europe Conference & Exhibition, DATE, IEEE, 2015, pp. 701–706.

[36] Z. Peng, X. Chen, C. Xu, N. Jing, X. Liang, C. Lu, L. Jiang, AXNet: ApproXimate
computing using an end-to-end trainable neural network, in: Proceedings of the
International Conference on Computer-Aided Design, 2018, pp. 1–8.

[37] S. Sen, S. Venkataramani, A. Raghunathan, Approximate computing for spiking
neural networks, in: Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2017, IEEE, 2017, pp. 193–198.

[38] S. Venkataramani, X. Sun, N. Wang, C.-Y. Chen, J. Choi, M. Kang, A. Agarwal,
J. Oh, S. Jain, T. Babinsky, et al., Efficient AI system design with cross-layer
approximate computing, Proc. IEEE 108 (12) (2020) 2232–2250.

[39] Z. Du, A. Lingamneni, Y. Chen, K.V. Palem, O. Temam, C. Wu, Leveraging
the error resilience of neural networks for designing highly energy efficient
accelerators, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 34 (8) (2015)
1223–1235.

[40] Y. Wu, C. Chen, W. Xiao, X. Wang, C. Wen, J. Han, X. Yin, W. Qian, C.
Zhuo, A survey on approximate multiplier designs for energy efficiency: From
algorithms to circuits, ACM Trans. Des. Autom. Electron. Syst. 29 (1) (2024)
http://dx.doi.org/10.1145/3610291.

[41] J. Park, S. An, J. Kim, S.E. Lee, Continuous convolution accelerator with data
reuse based on systolic architecture, in: 2023 20th International SoC Design
Conference, ISOCC, 2023, pp. 319–320.

[42] J. Park, J. Shin, R. Kim, S. An, S. Lee, J. Kim, J. Oh, Y. Jeong, S. Kim, Y.R. Jeong,
S.E. Lee, Accelerating strawberry ripeness classification using a convolution-based
feature extractor along with an edge AI processor, Electronics 13 (2) (2024).

[43] S. Hashemi, R.I. Bahar, S. Reda, A low-power dynamic divider for approximate
applications, in: Proceedings of the 53rd Annual Design Automation Conference,
DAC ’16, Association for Computing Machinery, New York, NY, USA, 2016.

[44] Y. Jeong, W.S. Jeong, J.Y. Shin, S.E. Lee, The design of embedded fuzzy logic
controller for autonomous mobile robots, in: 2023 20th International SoC Design
Conference, ISOCC, 2023, pp. 145–146.

[45] Y.W. Jeong, K.H. Go, S.E. Lee, Robot-on-chip: Computing on a single chip for
an autonomous robot, in: 2022 IEEE International Conference on Consumer
Electronics, ICCE, 2022, pp. 1–3.

http://refhub.elsevier.com/S0167-9260(24)00201-3/sb18
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb18
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb18
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb18
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb18
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb19
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb19
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb19
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb19
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb19
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb20
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb20
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb20
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb21
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb21
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb21
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb21
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb21
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb21
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb21
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb22
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb22
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb22
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb23
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb23
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb23
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb23
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb23
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb24
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb24
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb24
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb24
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb24
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb25
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb25
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb25
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb25
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb25
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb25
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb25
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb26
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb26
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb26
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb26
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb26
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb27
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb27
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb27
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb27
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb27
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb28
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb28
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb28
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb28
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb28
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb29
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb29
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb29
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb29
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb29
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb30
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb30
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb30
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb30
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb30
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb31
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb31
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb31
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb31
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb31
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb32
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb32
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb32
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb32
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb32
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb33
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb33
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb33
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb33
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb33
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb34
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb34
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb34
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb34
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb34
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb35
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb35
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb35
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb35
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb35
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb36
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb36
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb36
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb36
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb36
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb37
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb37
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb37
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb37
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb37
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb38
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb38
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb38
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb38
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb38
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb39
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb39
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb39
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb39
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb39
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb39
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb39
http://dx.doi.org/10.1145/3610291
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb41
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb41
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb41
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb41
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb41
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb42
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb42
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb42
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb42
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb42
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb43
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb43
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb43
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb43
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb43
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb44
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb44
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb44
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb44
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb44
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb45
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb45
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb45
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb45
http://refhub.elsevier.com/S0167-9260(24)00201-3/sb45

	SEAM: A synergetic energy-efficient approximate multiplier for application demanding substantial computational resources
	Introduction
	Related Work
	Evaluation Metrics of Approximate Computing
	Approximate Multiplier
	Application

	Architecture
	Experiment
	Energy-efficiency
	Accuracy
	Convolutional Neural Network (CNN)
	Fuzzy Logic based Pathfinding Algorithm


	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


