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Abstract: Stereo matching, utilized in diverse fields, poses a challenge to systems in resource-
constrained environments due to the significant growth of computational load with image resolution.
The challenge is crucial for the systems because fields utilizing stereo matching require short op-
erational time for real-time applications and low power architecture. Stochastic computing (SC)
is able to be a valuable approach to address the challenge by reducing the computational load by
representing binary numbers with stochastic sequences, which are encoded as a probability value,
and by leveraging the concept of mathematical probability. Also, it is possible for a system to be
error-tolerant by utilizing the characteristics of stochastic computing. Therefore, in this paper, we pro-
pose an approach for lightweight and error-tolerant stereo matching with a hardware-implemented
stochastic computing processor. To verify the feasibility and error tolerance of the proposed system,
we implemented the proposed system and conducted experiments comparing depth maps with
or without stochastic computing by calculating similarities. According to the experimental results,
the proposed system indicated no significant differences in output depth maps and achieved an
improvement in the depth maps from error-injected input images by an average of 58.95%. Therefore,
we demonstrated that stereo matching with stochastic computing is feasible and error-tolerant.

Keywords: stochastic computing (SC); stereo matching; error tolerance; processor

1. Introduction

Stereo matching, a computer vision technique that estimates 3D structures from
2D images, has been widely employed in various fields such as autonomous driving
and augmented reality (AR) to generate depth maps of environments [1]. The primary
goal of stereo matching is to determine disparities, which represent the displacements
between corresponding features in each pair of stereo images, as illustrated in Figure 1 [2].
However, the process of determining disparities involves comparing all pixel values within
a search window against those in a template block, leading to an increase in computational
complexity with the rise in image resolution. This presents significant challenges for
systems operating in resource-limited environments [3].

Recognizing the limitations of current stereo matching methods, this paper proposes
a novel approach to address these challenges with SC. SC is a computing paradigm that
employs stochastic sequences to represent and process data. A stochastic sequence is a bit
stream of ‘0’s and ‘1’s obtained by comparing a binary number with random numbers, as
shown in Figure 2. By approximating a binary number into a probability value between ‘0’
and ‘1’ and leveraging the concept of mathematical probability [4], SC replaces traditional
arithmetic units with concise logic gates [5]. This results in outputs with relatively low
accuracy but high error tolerance [6], making SC a promising solution for computationally
intensive applications such as image processing and artificial intelligence [7–9].
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Figure 1. An overview of how to obtain the disparity.

Figure 2. The extraction process of the stochastic sequence.

In this paper, we introduce a stereo matching system that includes a hardware-
implemented SC unit. The SC unit, featuring a specially designed parallel linear feedback
shift register (LFSR), addresses the latency issue of the random number generator and offers
benefits in terms of area efficiency and computation time. We connected the SC unit and
the ARM-based core via a bus, implemented the SC processor on an FPGA, and performed
stereo matching algorithm operations through the SC unit to obtain a depth map.

Our proposed system not only addresses the computational challenges of stereo match-
ing but also improves the error tolerance of the process. We validated the feasibility of our
system by comparing the depth map obtained with the SC unit to that obtained without it.
Furthermore, we verified the error tolerance of our system by obtaining depth maps from
input images with injected errors. Remarkably, when utilizing the SC unit, the output depth
map for the input images containing errors improved by an average of 58.95% compared to
when not utilizing the SC unit. The contributions of this work are as follows:

• The proposed system shows that there is no significant difference between the depth
map obtained with the SC unit and the one obtained without the SC unit.

• The proposed system demonstrates better tolerance to errors when the SC unit is utilized.
• The architecture of the LFSR included in the proposed system is parallelized to achieve

area efficiency.

This paper, therefore, presents a significant advancement in stereo matching tech-
niques, offering a solution that is both computationally efficient and error-tolerant. This
paper consists of the following. Section 2 outlines the background on the SC and stereo
matching algorithm employed in this work. Section 3 introduces related works about
the systems utilizing SC. Section 4 demonstrates the proposed overall system architec-
ture and the detailed aspects of the SC unit. Section 5 presents the implementation of
the proposed system and shows the experimental results. Lastly, Section 6 concludes
this paper.
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2. Background
2.1. Stochastic Computing

The implementation of SC requires three steps: stochastic number generation, stochas-
tic computing operation, and binary conversion [6]. In stochastic number generation,
binary numbers are converted into stochastic sequences with LFSRs and comparators. The
LFSR generates pseudo-random numbers by shifting bits and applying a feedback function,
which is a linear combination of certain bits in the register. As shown in Figure 3, an LFSR
forms a feedback loop consisting of a shift register and an XOR. By utilizing the structure
of the LFSR, a pseudo-random number is generated. The stochastic computing operation
is used to compute operations with the stochastic sequence, and the binary conversion
converts the sequence back into a binary number.

Figure 3. Circuits of Fibonacci LFSR and Galois LFSR: (a) 4-bit Fibonacci LFSR, (b) 4-bit Galois LFSR.

2.1.1. Area Efficiency

With SC, the traditional arithmetic operations are replaced with brief logic gates. For
example, a common binary multiplier is replaced by an AND gate, and a common binary
adder is replaced by a multiplexer (MUX), which is possible because of the application of
the concept of mathematical probability. Since the stochastic sequence refers to a probability
value, independently generated stochastic sequences represent independent probability
values [10].

Figure 4 demonstrates the stochastic computing operations. The probability that two
independent events occur at the same time is mathematically the multiplication of the
probabilities. Therefore, if two independent stochastic sequences are the inputs of an AND
gate, then the output of the gate is equal to the product of the probabilities. Similarly, the
probability that an event A or B occurs is the sum of their respective probability values.
Therefore, if the inputs of the MUX are independent stochastic sequences, the output is
related to the probability of the MUX select signal S being ‘1’ or being ‘0’. When S is
‘1’, the output of the MUX is the probability of the S and the A to occur simultaneously,
P(A)× P(S). When S is ‘0’, the output is P(B)× (1− P(S)). Consequently, the final output
of the MUX is P(A)× P(S) + P(B)× (1 − P(S)). If the probability of S is 4/8, the output
of the MUX is equal to the sum of the probabilities scaled to 1/2. The subtraction operation
is also possible by adding an NOT gate, as shown in Figure 4c [11].

Figure 4. Example of stochastic computing operations: (a) stochastic multiplication, (b) stochastic
addition, (c) stochastic subtraction.
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2.1.2. Error Tolerance

Because each digit in a stochastic sequence has the same weight, errors occurring in
the sequence have a relatively small influence. For example, if an error occurs in one part
of the 256-bit stochastic sequence representing an 8-bit binary number, the difference in the
result is only 1/256 [12]. Figure 5 demonstrates a case of bit flip occurring in a stochastic
sequence and the comparison of the results. As shown in Figure 5, even if an error occurs
in any bit of a stochastic sequence, the impact on the output is relatively small compared
to that of a binary number, in which errors of higher-weighted bits have a significant
impact [13].

Figure 5. Comparison of ideal case and error-occurred case of stochastic multiplication.

2.2. Stereo Matching

To extract disparities from stereo images, corresponding features between both images
are to be detected. One technique for detecting corresponding features is template match-
ing, which involves searching for the most correlated block in an image with a template
block in another image [14]. The stereo images have two characteristics: the cameras are
horizontally aligned, and searches for correlated blocks are conducted in a single image.
As a result, the correlated block exists on the same horizontal line as the template block and
has a position within a certain range of x-coordinates. In other words, a search window
for the correlated block is determined based on the position of the template block. The
disparity is decided by calculating the difference in the x-coordinates of the template block
and the most correlated block in the search window [15].

As described in Figure 6, stereo matching consists of four steps. In the cost compu-
tation, the matching cost is decided according to the differences in values between the
corresponding pixels. The cost aggregation refers to the aggregation of the matching costs
to obtain the most correlated block within the search window. In the disparity computation,
the disparity is obtained by calculating the distance of the coordinates between the tem-
plate block and the correlated block selected through the cost aggregation. The disparity
refinement aims to rectify the incorrect disparities obtained by stereo matching [16].

Figure 6. Composition of stereo matching.

2.2.1. Cost Aggregation

After the cost computation, which calculates the matching cost (in this work, the
difference in pixel values) of corresponding pixels in two blocks, cost aggregation proceeds.
In the cost aggregation, block-based cost matching functions are commonly employed
to aggregate costs [2]. One of the uncomplicated cost matching functions is the sum of
absolute difference (SAD). When the blocks are identical, the result is ‘0’. Another function
is the sum of squared difference (SSD), which requires multiplication operations resulting
in higher computational complexity than the SAD [17]. Normalized cross correlation (NCC)
is a method of normalizing the similarity between the two blocks, which is more computa-
tionally complicated than the SAD and the SSD as it involves multiplication, division, and
square root operations [18]. Equations (1)–(3) describe mathematical expressions for the
SAD, SSD, and NCC, respectively.
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SAD =
H

∑
j=1
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∑
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|aij − bij| (1)
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H
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W
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i,j
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√
1
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i,j
(aij − ā)2, σb =

√
1
N ∑

i,j
(bij − b̄)2 )

(3)

Among the three functions mentioned above, the SAD is the most suitable function for
cost-effective architectures. This is because the SAD employs only the most uncomplicated
operations [19]. Therefore, we utilized the SAD as the cost matching function to make it
suitable for an architecture with SC. Figure 7 demonstrates an overview of performing the
cost computation and aggregation employing the SAD.

Figure 7. Cost computation and aggregation with the SAD.

2.2.2. Disparity Computation

The process of disparity computation is a critical step in stereo matching. The disparity
is obtained as the difference between a template block and the block having the highest
correlation in the search window [20].

To begin with, we calculate and store the correlation values, i.e., SAD values, for each
pair of blocks—the template block and all the blocks within the search window. Once
we have the SAD values, we proceed to obtain the disparity. This is accomplished by
calculating the difference between the x-coordinate of the template block and that of the
block having the minimum result value from the SAD. The block with the minimum SAD
value is considered to have the highest correlation with the template block, and thus, its
x-coordinate is employed in the disparity calculation.



Electronics 2024, 13, 2024 6 of 17

2.2.3. Disparity Refinement

After the disparity computation, the generated disparity map often contains noises
such as invalid matches. These are disparities that do not accurately represent the depth
information of the scene and are caused by various factors such as occlusions, featureless
regions, or repetitive patterns [21].

To address this issue, we implemented methods such as filtering techniques. One
common approach is to apply a median filter to the initial disparity maps. The median
filter works by replacing each disparity value with the median of the disparities in its
neighborhood. This has the effect of preserving the edges while removing isolated noises.

Applying a median filter not only helps in reducing the noise in the disparity map but
it also minimizes the computational complexity. This is because the median filter operates
in a local neighborhood and does not require knowledge of the entire image. Therefore, the
median filter is able to be efficiently implemented even on large images [22].

3. Related Work

SC is a non-traditional computing technology that encodes information with finite-
length stochastic sequences of ‘0’s and ‘1’s. The probabilistic elements enable the simplifica-
tion of complex operations and resilience to errors, and various research projects utilizing
these properties have been carried out [7,9,23–28]. Particularly, studies have been con-
ducted to enhance the performance of SC and apply it to applications requiring robustness
against noise or demanding low power consumption, such as artificial intelligence filtering
operations [7,23,24] and image processing [9,25–28].

In [7], Extended Stochastic Logic (ESL) was applied as a method to solve the problem
of low accuracy in utilizing stochastic computing for artificial neural networks (ANNs). The
study replaced the accumulation process in ANN computing with an ESL-based adder and
substituted the conventional activation function with an ESL-based ReLU. This approach
resulted in a 48% improvement in accuracy compared to conventional SC-based methods,
an 84% reduction in area compared to non-SC-based methods, and a 60% decrease in power
consumption. In [23], a parallel SC-based neural network (NN) accelerator was proposed
to enhance the fault tolerance. This yielded a 2.8× improvement in energy efficiency com-
pared to traditional binary computing methods. The authors of [24] conducted research
to reduce overhead convolutional neural networks (CNNs) utilizing SC by addressing
high parallelism. Pseudo-Sobol sequences were proposed for SC-CNN, and an efficient
parallel computation-conversion hybrid convolution architecture was developed, leading
to improvements of 41% in energy efficiency and 36% in area.

In [9], non-scaling adders and subtracters were introduced which efficiently performed
cascade computations compared to scaling adders. These were verified by applying them to
an image sharpening filter. The accuracy of computations and the quality of the sharpened
images were measured by peak signal-to-noise ratio and the structural similarity index
measure. Ref. [25] proposed a simple method to improve the accuracy of SC by exchang-
ing the wires used in operations and suggests adders and multipliers for SC. These were
validated by applying adders and multipliers to the edge detection algorithm, resulting
in a reduction in area utilization (64%) and power consumption (96%) compared to the
accurate edge detection. In [26], a new technique called approximate stochastic computing
(ASC) for improving computation time in image processing was proposed. The research
verified its effect on computation time by an edge detection algorithm. Ref. [27] designed a
fuzzy noise reduction filter based on SC. The experimental result showed a reduction in the
hardware area and power consumption compared to conventional binary implementations.
And the proposed design preserved the quality of the results. In [28], the research analyzed
the stochastic absolute value function, stochastic tanh function, and one-parameter linear
gain functions in SC. The study verified the validity of SC through four basic image pro-
cessing algorithms: edge detection, frame difference-based image segmentation, median
filter-based image enhancement, and image contrast stretching. The result showed SC has
noise tolerance and consumes less hardware than the conventional methods.
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Table 1 displays the related works regarding stochastic computing utilized for
image processing.

Table 1. Analysis of related works.

Source Proposed Approach Application Pros Cons

Temenos, N. et al.,
2022 [9]

Non-scaling stochastic
computing adder and
subtracter.

Sharpening filter.

More accuracy in
cascaded computations.
Fewer resources are
required than in
stochastic computing
with MUX.

It is impossible to
utilize the efficiency
that is obtained by
utilizing a scaled
stochastic computing
circuit.

Joe, H et al., 2019 [25]
Stochastic computing
by the wire exchanging
method.

Edge detection
algorithm.

It improved the
accuracy of stochastic
computing.

The hardware circuit
design may become
complicated, which
may increase the power
consumption and area
of the hardware.

R. Seva et al., 2016 [26]
Approximate stochastic
computing focusing on
image processing.

Edge detection
algorithm.

It reduced the long
run-time of stochastic
computing.

Stochastic computing
may not be suitable for
applications requiring
high accuracy, such as
edge detection.

S. N. Estiri et al.,
2022 [27]

Stochastic computing is
applied to a fuzzy noise
reduction filter.

Fuzzy noise reduction
filter.

Saving in the hardware
area and power costs
compared to the
conventional binary
implementation while
preserving the quality
of the results.

Since the accuracy of
the results is not
always guaranteed, it
can be an important
problem in noise filters.

P. Li et al., 2011 [28]

They analyzed the
stochastic absolute
value function,
stochastic tanh
function, and
one-parameter linear
gain function in
stochastic computing.

Edge detection, frame
difference-based image
segmentation, median
filter-based image
enhancement, and
image contrast
stretching.

It proved stochastic
computing is tolerant
of soft errors and
consumes fewer
hardware resources
than conventional
computing.

As with other
applications utilizing
SC, it can be a problem
if high accuracy is
required.

The following is a summary of how the works introduced in Table 1 address the
potential critical drawback of low accuracy in stochastic computing.

In [9], the authors propose an efficient yet simple stochastic computation technique
for multipliers and adders by exchanging the wires used for their operation. This design
reduces the relative error in computation compared to conventional designs.

In [26], the authors propose a new technique called the approximate stochastic com-
puting (ASC) approach focusing on image processing applications. This approach reduces
the computation time of an SC by a factor of 16 at a trade-off of an error percentage of 3.13%
in the absolute stochastic value.

And in [27], the authors implement an efficient hardware design for a well-known
fuzzy noise reduction filter based on stochastic computing. The filter consists of two main
stages: edge detection and fuzzy smoothing. The results demonstrate that the proposed
design reduces the relative error in computation compared to the conventional designs and
has a smaller area.

4. System Architecture

Figure 8 provides a comprehensive illustration of the overall architecture of our pro-
posed system. This system is designed for lightweight and error-tolerant stereo matching,
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and it incorporates a stochastic computing processor as a key component. The SC processor
is composed of two main parts: an SC module and an ARM Cortex-M0 core [11].

Figure 8. The overall architecture of the proposed system.

The SC module is responsible for the stochastic computations required for the stereo
matching process. It is designed to efficiently calculate the SAD values, which are crucial
for disparity computation in stereo matching. The ARM Cortex-M0 core, on the other hand,
serves as the control unit of the system [29,30]. Once the stereo images are received from
a camera module via the camera interface, the Cortex-M0 controls the stereo matching
process by commanding the SC module to calculate the SAD values.

Once the SAD values are computed, the Cortex-M0 core proceeds to the next step
of the process: disparity computation, which computes the disparities based on the SAD
values and generates a depth map. The stereo matching operations are performed with a
preset block size. Finally, the resulting depth map is transmitted to the outside through the
serial communication module.

4.1. Stochastic Computing Module

As shown in Figure 9, the stochastic computing module includes a stochastic con-
figuration register and stochastic computing core, which consists of stochastic number
generators (SNGs), a stochastic computing unit, and a probability estimator (PE).

Figure 9. A block diagram of the stochastic computing module.



Electronics 2024, 13, 2024 9 of 17

4.1.1. Stochastic Number Generator

In this work, we have employed a parallel architecture of an LFSR in the random
number generator (RNG) to effectively address the issue of latency [31]. The latency here
is reduced by generating multiple random numbers simultaneously during the stochastic
sequence generation process.

Figure 10 provides an illustration of this concept. It shows the architecture of the basic
SNG and that of the SNG equipped with a parallel LFSR [32]. The parallel LFSR, as shown
in Figure 10b, is capable of generating multiple random numbers at the same time. This is
achieved with a relatively low circuit area, especially when compared to an architecture
that simply utilizes multiple LFSRs.

Figure 10. (a) The basic SNG architecture. (b) The SNG with a parallel LFSR.

The basic LFSR outputs a random number in a clock cycle. Therefore, if 256 random
numbers are to be obtained through an 8-bit LFSR, 256 clocks are required [33]. The circuit
employed in this work, however, requires only one clock cycle by designing the parallel
LFSR circuit with 256 stages, as shown in Figure 11. In the circuit, the first random number
output of the LFSR becomes the input of the 256th random number output, and the 256th
random number output becomes the input of the 255th random number output, and so
forth. The parallel LFSR circuit employs only one LFSR, eliminating the risk of loss in error
rate due to correlations. Also, the circuit utilizes only XOR gates so that area efficiency is
achieved without additional registers.

Figure 11. Circuit of 256-stage parallel LFSR.
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4.1.2. Probability Estimator

Since the data output through the SC unit is still a stochastic sequence, it is necessary
to convert the sequence back to the binary number, and the PE performs this conversion.
In the probability value of P = N/L encoded from the stochastic sequence, the number of
‘1’s (N) is approximated to a binary number. Therefore, the number of ‘1’s on a stochastic
sequence output as a result of the operation is counted, and the conversion to the binary
number is performed in consideration of the case of being scaled [34].

5. Implementation and Experiments
5.1. Hardware Implementation

Figure 12 demonstrates the hardware-implemented system. We designed the proposed
SC processor, which includes the 8-bit parallel LFSRs, with Verilog HDL and downloaded
it to an Altera MAX10, 10M50SCE144C8G FPGA. The SC processor interfaces with the
external system through a universal asynchronous receiver/transmitter (UART), a serial
communication module that enables serial communications. Furthermore, commands and
input data for performing the stereo matching operation are stored through an external
memory (4Mbit SRAM, CY7C1049GN30). The computation result, the depth map, is
transmitted to the external system via UART.

Figure 12. The hardware-implemented SC processor.

5.2. Experiments
5.2.1. Experimental Procedures

For the experiments, we employed a stereo image dataset [35]. To make the dataset
images suitable for our proposed system, we converted them to grayscale and resized and
cropped them [36], setting the resolution of the input images to 160 × 120. Figure 13 shows
the employed dataset and the input images of the experiments.

Figure 13. The stereo image dataset, noise-free input images, and noise-injected input images:
(a) artroom, (b) chess, (c) djembe, (d) newkuba, (e) skates.

Before conducting the experiments, we performed a software simulation. This allowed
us to determine the block sizes that would yield suitable results from the employed stereo
matching algorithm. We settled on block sizes of 15, 19, and 23. In the resulting output
depth maps, the disparities of each pixel were mapped to values between 0 and 255.
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To compare the depth maps obtained through this process, we converted the depth
maps to histograms. We then computed the similarity between the histograms with several
functions: correlation, chi-square, intersection, bhattacharyya distance, peak signal-to-noise
ratio (PSNR), and NCC.

The first experiment out of two experiments compared the depth map obtained
utilizing SC with the depth map obtained without utilizing SC on error-free input images
to verify the feasibility of the proposed system. The second experiment repeated the
first experiment but with 30% salt-and-pepper noise injected into the input images. The
depth maps obtained utilizing SC and without utilizing SC on the noisy images were each
compared with the depth map obtained without utilizing SC on noise-free images. This
was performed to verify the error tolerance of the proposed system.

5.2.2. Feasibility Verification

Figure 14 and Table 2 display the results with noise-free input images. In Figure 14, the
top figures show the input images, followed by the depth maps obtained when the block
size is 15, 19, and 23, respectively, in order. The left depth maps were obtained without SC,
and the right ones with SC. When comparing the two depth maps, they have no significant
differences visually.

Table 2. The comparison results of depth maps from noise-free input images.

Input
Dataset

Block
Size

Comparison Method

A * B * C * D * PSNR (db) NCC

artroom
15 0.925 1.759 0.810 0.216 16.395 0.866
19 0.891 0.956 0.726 0.235 16.337 0.868
23 0.868 0.997 0.693 0.261 16.212 0.855

chess
15 0.986 2.127 0.910 0.207 12.265 0.749
19 0.985 2.167 0.908 0.236 12.759 0.792
23 0.988 1.454 0.915 0.232 12.864 0.803

djembe
15 0.995 0.627 0.912 0.151 17.109 0.896
19 0.997 0.260 0.943 0.137 17.904 0.910
23 0.997 0.210 0.916 0.145 18.922 0.926

newkuba
15 0.953 2.876 0.896 0.228 16.846 0.853
19 0.954 1.286 0.857 0.234 19.357 0.910
23 0.948 0.931 0.792 0.213 21.588 0.944

skates
15 0.994 1.377 0.979 0.231 13.923 0.784
19 0.997 0.992 0.957 0.213 14.413 0.808
23 0.997 0.690 0.962 0.206 13.707 0.759

* A: correlation, B: chi-square, C: intersection, D: bhattacharyya distance.

Figure 14. The stereo matching results from noise-free input images: (a) artroom, (b) chess, (c) djembe,
(d) newkuba, (e) skates.
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Upon a more detailed comparison through the similarity values calculated and pre-
sented in Table 2, we notably observed the high similarity. This is particularly true for
functions such as correlation, intersection, and NCC, which yield a result of ‘1.000’ when
computed between identical images, as shown in Table 3. These high values confirmed
a significant degree of similarity between the two depth maps. Notably, in the case of
correlation, all similarity values were found to be ‘0.868’ or higher, further substantiating
this observation. In Figure 15, the similarity values through the above-mentioned functions
are expressed as graphs.

Table 3. The similarity values when both images are identical.

Comparison Method

Correlation Chi-Square Intersection Bhattacharyya
Distance PSNR (db) NCC

1.000 0.000 1.000 0.000 ∞ 1.000

Figure 15. Graphs of similarity values between two depth maps obtained from noise-free input images.

Upon analyzing the experimental results in Figures 14 and 15 and Table 2, it is visually
observed from Figure 14 that for relatively simple input images such as ‘artroom’, ‘chess’,
and ‘skates’, the difference between the depth maps obtained with and without SC is
somewhat larger compared to other datasets. This observation is also confirmed through
the experimental results displayed in Table 2 and Figure 15. It is inferred that this is due
to the fact that the more complex the image being compared in the template matching
process (i.e., the more features present), the more advantageous it is to find similar images.
Furthermore, through Figure 15, it is confirmed that as the block size increases, the similarity
between the two depth maps gradually decreases.

5.2.3. Error Tolerance Verification

Figure 16 and Tables 4 and 5 display the results with noise-injected input images.
In Figure 16, the top figures illustrate the noise-injected input images, followed by the
depth maps obtained with the block sizes. As shown in Figure 14, the left depth maps
were obtained without SC, and the right ones with SC. Comparing both depth maps, it is
confirmed that more parts remain when the depth map is obtained with SC than when it is
without SC, that is, it is more tolerant to the injected errors.

Table 4 shows the similarity values calculated by comparing depth maps obtained
without SC from the noise-injected input images and depth maps obtained without SC from
the noise-free input images. Conversely, Table 5 shows the similarity values calculated by
comparing depth maps obtained with SC from the noise-injected input images and depth
maps obtained without SC from the noise-free input images. That is, both depth maps
obtained from the noise-injected input images were compared with the same depth map to
find out how much improvement is achieved when utilizing SC.
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Table 4. The comparison results of depth maps without SC from noise-injected input images.

Input
Dataset

Block
Size

Comparison Method

A * B * C * D * PSNR (db) NCC

artroom
15 0.125 9.448 0.065 0.800 3.890 0.285
19 0.090 11.741 0.059 0.827 3.520 0.244
23 0.050 22.174 0.047 0.857 3.282 0.226

chess
15 0.253 4.993 0.117 0.756 3.296 0.188
19 0.289 3.950 0.144 0.743 3.114 0.152
23 0.292 3.635 0.156 0.757 3.030 0.158

djembe
15 0.342 3.535 0.152 0.764 4.176 0.228
19 0.293 3.693 0.145 0.775 4.197 0.347
23 0.261 3.997 0.137 0.783 4.204 0.526

newkuba
15 0.034 6.100 0.044 0.812 2.920 0.246
19 0.037 5.386 0.042 0.822 2.743 0.229
23 0.039 5.091 0.042 0.824 2.658 0.222

skates
15 0.367 26.082 0.278 0.658 4.087 0.234
19 0.379 56.550 0.298 0.676 4.417 0.439
23 0.201 46.279 0.177 0.734 3.558 0.351

* A: correlation, B: chi-square, C: intersection, D: bhattacharyya distance.

Table 5. The comparison results of depth maps with SC from noise-injected input images.

Input
Dataset

Block
Size

Comparison Method

A * B * C * D * PSNR (db) NCC

artroom
15 0.171 8.833 0.141 0.605 5.244 0.417
19 0.144 11.250 0.130 0.645 4.586 0.342
23 0.098 21.865 0.106 0.707 4.068 0.285

chess
15 0.342 4.695 0.255 0.542 5.162 0.445
19 0.373 3.598 0.258 0.567 4.558 0.390
23 0.373 3.413 0.246 0.595 4.103 0.332

djembe
15 0.153 8.474 0.068 0.885 5.307 0.240
19 0.604 3.634 0.444 0.440 7.227 0.449
23 0.593 3.228 0.436 0.455 7.044 0.419

newkuba
15 0.134 5.661 0.145 0.664 4.759 0.395
19 0.125 4.689 0.111 0.717 4.143 0.345
23 0.137 4.526 0.102 0.745 3.877 0.326

skates
15 0.595 30.309 0.691 0.475 7.383 0.568
19 0.582 59.356 0.661 0.511 6.574 0.537
23 0.425 46.695 0.450 0.587 5.593 0.518

* A: correlation, B: chi-square, C: intersection, D: bhattacharyya distance.

Upon comparing Tables 4 and 5, it is evident that the depth maps obtained with
SC generally approached the similarity values calculated between identical images. To
quantitatively assess the improvement, we calculated improvement rates with a formula:
(Final Value − Initial Value)/Initial Value × 100 [%].

The improvement rates of the depth maps for each function, input dataset, and block
size were calculated and are presented in Table 6.

In Table 6, the overall average of the improvement rate was approximately 58.95%.
The average improvement rates for the block sizes starting from 15 were approximately
51.03%, 62.50%, and 63.33%, respectively. The results indicate a different trend from the
previous experiments, where the similarity decreased as the block size increased. This is
able to be explained from the fact that the cost matching function, SAD, employed in our
work does not consider the position of pixels during calculation. Therefore, while larger
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block sizes are disadvantageous for performing template matching, the cumulative error
in calculation when not using SC for noisy input images increases with block size. This
means that it is possible for the degree of improvement when using SC to be made larger.
These experimental results allow us to confirm the error tolerance of the proposed system.

Figure 16. The stereo matching results from noise-injected input images: (a) artroom, (b) chess,
(c) djembe, (d) newkuba, (e) skates.

Table 6. The improvement rates of depth maps.

Input
Dataset

Block
Size

Comparison Method

A * B * C * D * PSNR (db) NCC

artroom
15 36.80% 6.51% 116.92% 24.38% 34.81% 46.32%
19 60.00% 4.18% 120.34% 22.01% 30.28% 40.16%
23 96.00% 1.39% 125.53% 17.50% 23.95% 26.11%

chess
15 35.18% 5.97% 117.95% 28.31% 56.61% 136.70%
19 29.07% 8.91% 79.17% 23.69% 46.37% 156.58%
23 27.74% 6.11% 57.69% 21.40% 35.41% 110.13%

djembe
15 −55.26% −139.75% −55.26% −15.84% 27.08% 5.26%
19 106.14% 1.60% 206.21% 43.23% 72.19% 29.39%
23 127.20% 19.24% 218.25% 41.89% 67.55% −20.34%

newkuba
15 294.12% 7.20% 229.55% 18.23% 62.98% 60.57%
19 237.84% 12.94% 164.29% 12.77% 51.04% 50.66%
23 251.28% 11.10% 142.86% 9.59% 45.86% 46.85%

skates
15 62.13% −16.21% 148.56% 27.81% 80.65% 142.74%
19 53.56% −4.96% 121.81% 24.41% 48.83% 22.32%
23 111.44% −0.90% 154.24% 20.03% 57.20% 47.58%

* A: correlation, B: chi-square, C: intersection, D: bhattacharyya distance.

6. Conclusions

This work presents a novel approach for lightweight and error-tolerant stereo match-
ing with a hardware-implemented SC processor. SC, which represents and processes data
utilizing stochastic sequences and leverages the concept of mathematical probability, re-
places traditional arithmetic units with concise logic gates such as AND or MUX. This
makes the SC processor lightweight compared to methods that rely on complex 3D CNNs
or weighted loss functions used in other works. Furthermore, each digit in a stochastic
sequence has the same weight in SC, so even if an error occurs in any bit of the stochastic
sequence, the impact on the output is relatively small. This makes SC more error-tolerant
compared to methods that may struggle with disparity estimation in occluded regions or
unsupervised training.
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In this work, we have successfully implemented a system that leverages the character-
istics of SC to obtain depth maps through stereo matching operations. For this purpose, we
designed an SC processor with Verilog HDL and implemented it on an FPGA. The imple-
mented SC processor includes an SC unit for SC operations, which contains a stochastic
number generator composed of a random number generator and a comparator to generate
stochastic sequences. The random number generator is designed as a 256-stage parallel
LFSR capable of generating 256 random numbers within one clock cycle. This makes it
more efficient compared to methods that require a balance between disparity estimation
accuracy and efficiency [37–39].

We conducted experiments to verify the feasibility of the proposed system by obtaining
depth maps from noise-free input images and to validate its error tolerance by obtaining
depth maps from noise-injected images. The experimental results demonstrated that ob-
taining depth maps from noise-injected input images with SC improved by an average of
58.95% compared to without SC. This indicates that the proposed system exhibits error
tolerance without significantly degrading the quality of the output depth map.

The system is expected to be applicable in environments where errors are likely to oc-
cur due to instability, such as inside vehicles, and where available resources are limited [40].
However, the system proposed in this paper did not demonstrate an operation time fast
enough to be suitable for real-time applications during the experimental process. This is
able to be attributed to various delays occurring within the system, such as the delay in
data movement through the bus and the delay in re-converting the stochastic sequence
into a binary number. Therefore, in future work, it will be necessary to conduct research
to implement a system in which it is possible to be applied not only to images but also to
video applications. This could be achieved by directly mounting the SC module inside the
processor core to reduce the delay from data movement or by further optimizing the archi-
tecture of the SC module to reduce delay. This will enhance the versatility and applicability
of the system in various real-world scenarios.
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Abbreviations
The following abbreviations are used in this manuscript:

SC stochastic computing
AR augmented reality
LFSR linear feedback shift register
FPGA Field-Programmable Gate Array
MUX multiplexer
SAD sum of absolute difference
SSD sum of squared difference
NCC normalized cross correlation
ESL Extended Stochastic Logic
ANN artificial neural network
NN neural network
CNN convolutional neural network
ASC approximate stochastic computing
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SNG stochastic number generator
RNG random number generator
PE probability estimator
UART universal asynchronous receiver/transmitter
PSNR peak signal-to-noise ratio
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