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Abstract: Stochastic computing requires random number generators to generate stochastic sequences
that represent probability values. In the case of an 8-bit operation, a 256-bit length of a stochastic
sequence is required, which results in latency issues. In this paper, a stochastic computing architecture
is proposed to address the latency issue by employing parallel linear feedback shift registers (LFSRs).
The proposed architecture reduces the latency in the stochastic sequence generation process without
losing accuracy. In addition, the proposed architecture achieves area efficiency by reducing 69%
of flip-flops and 70.4% of LUTs compared to architecture employing shared LFSRs, and 74% of
flip-flops and 58% of LUTs compared to the architecture applying multiple LFSRs with the same
computational time.
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1. Introduction

Stochastic Computing (SC) adopts the concept of probability and approximates the
binary number to the probability value between 0 and 1. SC utilizes a bit stream of ‘0’ s
and ‘1’ s called stochastic sequences for computation instead of binary numbers. The
stochastic sequence is obtained by comparing the random number and the binary number.
The comparator outputs ‘1’ when the size of the binary number is larger than the random
number and ‘0’ in the opposite case. In this way, the output bits from the comparator
become a stochastic sequence, and the stochastic sequence is encoded as a probability value,
approximated as a ratio of 1s out of the total number of bits in the sequence. Figure 1
shows the basic method of encoding a sequence to a probability value P. When the number
of 1 is defined as N, and the length of the entire sequence is L, the sequence represents a
probability value ‘N/L’ [1].

Figure 1. Concept of stochastic encoding. The number 1 is defined as N, and the length of the entire
sequence is L.

Outputs from traditional binary arithmetic operations are accurate, but the outputs
are vulnerable to errors. However, SC inherently loses accuracy but offers fault tolerance
and the advantage of area efficiency with lightweight computational circuits [2]. Therefore,
recent works apply SC to computationally intensive applications such as image process-
ing [3], cloud systems [4], artificial intelligence [5,6], and filter operations [7], reducing
circuit area and improving accuracy. For example, ref. [3] replaced the existing scaled adder
with an adder that does not require scaling and implemented efficient image sharpening.
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Further, reference work [6] implemented SC for artificial intelligence neural networks by
applying extended SC logic to achieve high accuracy.

However, SC requires a stochastic sequence including a large number of ‘0’ s and
‘1’ s [8], and generating the long stochastic sequence results in latency issues [9,10]. For
instance, in 8-bit computation, the SC requires a 256-bit-long stochastic sequence [8]. Tradi-
tionally, the SC employs a linear feedback shift register (LFSR) to obtain random numbers
and stochastic sequences. Since one LFSR with one feedback loop generates only one
pseudo-random number in each clock cycle, 256 clock cycles are required to obtain 256 bits
of a stochastic sequence. Therefore, to address the latency issue and apply parallel architec-
ture, ref. [11] replaced an LFSR with analog circuits by applying a memristor. Additionally,
ref. [12] applied the Sobol sequence, a quasi-random sequence, significantly reducing
computational time.

In this paper, a stochastic computing architecture employing parallel LFSRs is pro-
posed to address the latency issue. Moreover, the proposed parallel architecture demon-
strates the following benefits of applying a parallel LFSR in stochastic computing; compu-
tation time, area efficiency, and accuracy. The proposed architecture achieves high area
efficiency compared to an architecture employing shared LFSRs, reducing the computa-
tional time by sharing LFSRs, and architecture based on multiple LFSRs. The proposed
parallel architecture achieves area efficiency by reducing 69% of flip-flops and 70.4% of
LUTs compared to an architecture employing shared LFSRs. Furthermore, the proposed
architecture obtains the stochastic sequence in one clock cycle without losing accuracy. The
contributions of this work are as follows:

• The proposed architecture demonstrates the advantages of applying a parallel LFSR
to stochastic computing through hardware implementation

• The proposed parallel stochastic computing architecture reduces the latency and
obtains the stochastic sequence in one clock cycle without losing accuracy

• Three different types of parallel LFSRs are implemented, and the proposed architecture
achieves the area efficiency and the lowest error rate

2. Backgrounds
2.1. Concept of Stochastic Computing

As shown in Figure 2, three steps are required to implement SC; stochastic number
generation, stochastic computing, and binary converting. The first step is to convert binary
numbers into a stochastic sequence with an LFSR and a comparator. The next step is
to compute operations with the stochastic sequence and convert the sequence back into
binary numbers.

Figure 2. Flow of a stochastic computing.

2.1.1. Stochastic Number Generation

Stochastic number generators are responsible for converting binary numbers into
stochastic sequences, consisting of an LFSR, random number generator, and comparator,
as shown in Figure 2. The two inputs of the comparator are connected to the outputs of
the LFSR and binary input, respectively. The comparator compares the size of the random
number from the LFSR and the binary input for each clock cycle and outputs ‘0’ or ‘1’, and
the output bits become a stochastic sequence.

The circuit shown in Figure 3a is a 4-bit Fibonacci LFSR, and the circuit shown in
Figure 3b is the 4-bit Galois LFSR circuit. The Fibonacci LFSR is converted to the Galois



Electronics 2023, 12, 1749 3 of 14

circuit one-on-one through reversing output. The LFSR includes a feedback loop consisting
of a shift register and an XOR gate. The LFSR cannot have an initial seed value of zero
because the output is always zero, even if a bit shift occurs. Starting with the seed value
containing 1, the bit is shifted in every clock cycle, and the next output is determined by
the output of the XOR gate.

Figure 3. Circuit of Fibonacci LFSR and Galois LFSR to obtain random numbers (a) Fibonacci LFSR
(b) Galois LFSR.

2.1.2. Stochastic Computing

Since the stochastic sequence refers to the probability value, the independent stochastic
sequence represents the independent probability value. The characteristics of binary
computing and stochastic computing are distinguished in stochastic computing circuits due
to the SC replacing the general binary operator with a specific operator through stochastic
interpretation. For example, arithmetic operations such as multiplication, addition, and
subtraction are implemented through logic gates, as shown in Figure 4. Further, complex
operations such as division, absolute value operations, hyperbolic tangent operations, and
exponential functions are implemented through sequential circuits [13,14].

Figure 4. Stochastic computing circuits; (a) Stochastic uni-polar multiplier (b) Stochastic bipolar
multiplier (c) Stochastic adder (d) Stochastic subtractor.

AND gates for uni-polar and XNOR gates for bipolar replace arithmetic operators
based on the Monte Carlo method [1]. This point enables reducing the circuit area when
applying SC to computationally intensive applications that repeat a multiplication. Further,
MUX implements addition and subtraction and requires three stochastic sequences at
the same time. In the case of absolute value operation, hyperbolic tangent function, and
exponential operation, the SC circuit is implemented in a Markov Chain method based on
a finite state machine (FSM) [15,16].

2.1.3. Binary Converting

SC utilizes stochastic sequences, and the output of the operation is also the stochastic
sequences, not binary. Therefore, a process of converting the sequence back into binary
numbers is required. Since the N, the number of ‘1’ s, is approximated to binary number X
in the probability value P = N/L, as shown in Figure 5, the number of 1 s in the stochastic
sequence is converted to binary number X.

Figure 5. Flow of binary converting.
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2.2. Area Efficiency

SC replaces arithmetic operators with simple logic gates. For example, a multiplier is
replaced by an AND gate, and an adder is replaced by MUX. This is because the probability
that two independent events occur at the same time is mathematically the multiplication
of the probabilities. If two independent stochastic sequences, i.e., probability values, are
the inputs of an AND gate, then the output of an AND gate is equal to the product of the
probabilities. For example, if two sequences represent independent probability values 4/8
and 6/8 each, the result of the multiplication, 3/8, is obtained as the output, as shown in
Figure 6. Therefore, if SC is applied to repeated operations, the multipliers are replaced
with AND gates effectively.

Figure 6. Example of stochastic multiplication.

Similarly, the probability of two independent events, A and B, occurring is the sum of
their respective probability values. If the probability of the selection signal for the MUX
being 1 is P(S), and the probabilities of events A and B being 1 are P(A) and P(B), respectively,
the output of the MUX is P(A) × P(S) if the selection signal is 1, and P(B) × (1 − P(S)) if the
selection signal is 0. Therefore, the final output of MUX is as follows:

P = (P(A)P(S)) + (P(B)(1 − P(S))) (1)

If the probability of the selection signal for the MUX being 1 is 1/2, then the output of
the MUX is equal to the sum of the probabilities scaled to 1/2, as shown in Figure 7a. In
addition, as shown in Figure 7b, the subtractor is implemented by adding a NOT gate.

Figure 7. Example of stochastic addition and subtraction: (a) Stochastic addition, (b) Stochastic
subtraction.

By utilizing the scaled values obtained from the MUX, SC implements the tri-linear
interpolation expression for finding the middle coordinate of a cuboid using only seven
MUXs [17]. This approach offers area efficiency by reducing hardware complexity and
computational requirements.

2.3. Fault-Tolerance

The stochastic sequence is generated using a random number generator and a com-
parator. Therefore, as shown in Figure 8, when some bits are flipped, the final output is not
significantly affected compared to the situation where a bit error occurs in a binary number.
For example, in the case of Figure 8, even if a bit flip occurs in the stochastic sequence,
the ideal output is 3/8. In a faulty case, the output is 2/8, resulting in a difference of 1/8
compared to the ideal output.
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Figure 8. Comparison between ideal case and fault case.

In addition, unlike binary numbers, where each digit has a different weight, each of
the 256 bits in a stochastic sequence representing an 8-bit binary number has the same
weight. If an error occurs in one of the 256 bits, it has a relatively small influence since
the weight of each bit is 1/256. Therefore, even if an error occurs in any of the bits, the
impact on the final output is relatively small compared to a binary number, where errors in
higher-weighted bits have a larger impact on the overall value.

3. Related Works

This chapter provides an overview of related research that has focused on reducing
computational time and increasing hardware efficiency. In particular, the chapter examines
several works that have explored the use of stochastic computing (SC) to achieve these
goals. Additionally, the chapter highlights the broad range of applications where SC has
been successfully applied, from image processing to neural networks.

3.1. Parallel Architectures for LFSRs

Research is being conducted to parallelize LFSRs and further improve path delay or
reduce complexity. First, in [18], the complexity of the parallel LFSR feedback loop was
reduced, and pipelining was applied. The feedback loop connected in parallel was shorter
and simpler than the feedback loop in the traditional LFSR. This technique was applied to
the IIR filter design to reduce the critical path.

Moreover, ref. [19] also proposed a parallel architecture and reduced path delay and
hardware complexity. The proposed architecture eliminates unnecessary registers and XOR
gates and calculates the output by using only the past feedback values.

Unlike those studies that focused on improving the parallel LFSR, this work aimed to
utilize the characteristic of the parallel LFSR’s output, which cycles to obtain multiple non-
overlapping random numbers simultaneously, in stochastic computing. Specifically, this
work analyzed the advantages of using these random numbers in stochastic computing.

3.2. Parallel Stochastic Number Generators
3.2.1. SC Utilizing Shared Random Number Source

Stochastic number generators account for converting binary numbers into probability
values in stochastic computing, but their implementation occupies a large portion of the
circuit area and increases latency. Thus, refs. [20,21] have proposed techniques for sharing
random number generators to reduce both circuit area and latency. However, sharing
LFSRs introduces accuracy loss due to the correlation between probability values [22,23].
To mitigate the correlation, ref. [21] has proposed cyclically shifting the output of the
random number generator, and this technique was used in a designed SC circuit for image
processing, resulting in a reduction in circuit area [21].

In [20,21], the proposed technique for sharing random number generators was im-
plemented using a circular shifter to reduce the correlation between probability values.
However, this work explored an alternative approach using a combinational circuit. To
compare the effectiveness of sharing LFSRs, this work examined the advantages and
disadvantages in relation to a proposed parallel architecture.

3.2.2. SC with Increased Energy Efficiency Using Sobol Sequence

To address latency issues in SC, ref. [12] explored the use of a Sobol sequence with
a quasi-random number instead of LFSRs. The Sobol sequence has a shorter length than
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LFSRs and improves the accuracy of stochastic computations. Moreover, the proposed
architecture in [12] offers a parallel implementation of the random number generator
utilizing the Sobol sequence, which results in improved hardware efficiency.

Ref. [12] demonstrated improved efficiency by utilizing a Sobol sequence. However,
this work proposes an architecture that increases efficiency by employing LFSR.

3.3. Application of SC
3.3.1. Image Processing

Image processing on a pixel basis is relatively simple, but the overall computation
of image processing is very large because of the large number of pixels. The SC enables
repetitive image computation circuits at a low cost through the simplification of the cir-
cuits [24]. Image processing with SC is implemented through various algorithms such as
edge detection [15] and Gamma Correction [25] and applied to complex systems such as
autonomous driving [26].

Since the central difference algorithm includes only absolute value operations and
scaled addition and subtraction operations, SC requires lightweight logic to implement
the algorithm [15]. The central difference algorithm is implemented only with MUX and
NOT gates, which are SC addition and subtraction calculators and SC absolute value
calculators [15]. Experimental results from [15] show that there is no significant difference
between the edge detection image implemented through SC and the edge detection image
implemented through the deterministic operation.

Gamma Correction, which non-linearly transforms the intensity signal of light, in-
cludes an exponential function. The corresponding operation is approximated by the
Bernstein Polynomial operation and implemented through SC [25]. Reference work [25]
changed the length of stochastic sequences and analyzed error changes and hardware costs
with the length of the sequence. Moreover, ref. [25] demonstrated the strength in terms of
cost by comparing and analyzing Gamma Correction implemented through the SC module
proposed in [25] with the traditional method.

3.3.2. Neural Networks

Ref. [6] demonstrated efficiency in terms of area and power consumption by applying
SC to solve the power issue of ANN hardware arising from high-density neuron comput-
ing [6]. Ref. [6] proposed extended stochastic logic (ESL) to support a wider range of input
coding and to use ESL-based ReLU functions as related active functions. By applying the
ESL method, the accuracy is improved by 48%; the area cost is reduced by 84%, and the
power consumption by 60% compared to modules to which SC is not applied.

Ref. [27] proposed a deep-learning parameter optimization method. For deep-learning
parameter optimization, probabilistic conductive bridging RAM (CBRAM) was applied to
efficiently generate stochastic sequences. Furthermore, the proposed method was applied
to the convolutional neural network (CNN) and obtained 167 uW of power consumption.

Refs. [28,29] implemented an artificial neural network (ANN) with SC to reduce
area overhead and power consumption due to large numbers of parameters and complex
connections between neurons. Ref. [29] achieved 95.3% area reduction and 90% power
reduction compared to an ANN without applying SC.

4. Parallel Stochastic Computing Architecture

In this paper, parallel SC architecture is proposed to address the latency issue. The
proposed architecture obtains multiple random numbers simultaneously, which reduces
the latency in the stochastic number generation process. Figure 9a shows the concept of a
basic stochastic number generator, which consists of an LFSR and a comparator.
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To address the latency issue, this work compares three methods. The first method,
shown in Figure 9b, is to increase the number of LFSRs. However, this approach is inefficient
in terms of circuit area because the number of registers increases with the number of
random numbers generated simultaneously. The second method is to share LFSRs, shown
in Figure 9c, where a single LFSR output is converted into multiple random numbers using
additional combinational circuits. However, shared LFSRs have limitations in generating a
large number of random numbers simultaneously due to correlations between the random
numbers [30–32].

Finally, the proposed architecture employs a parallel LFSR [33] as shown in Figure 9d
to generate multiple random numbers simultaneously without significantly increasing the
circuit area or compromising the error rate. This results in reduced latency, as multiple
random numbers are obtained at the same time. The proposed architecture achieves
reduced latency by adding only XOR gates without additional registers.

Figure 9. Three different types of parallel LFSRs: (a) Basic LFSRs (b) Multiple LFSRs (c) Shared LFSRs
(d) Parallel LFSRs.

4.1. Stochastic Computing Employing Multiple LFSRs

As illustrated in Figure 10, employing multiple LFSRs reduces the time for obtaining
multiple random numbers. However, when applying multiple LFSRs, the initial seed
values of the LFSRs affect the error rate due to the correlation between random numbers.
However, since the output random numbers are directly connected to the registers, multiple
LFSRs offer the advantage of being able to operate at a high clock frequency.

For example, in an 8-bit operation, 256 LFSRs are required, and 256 random initial seed
values are also required for the LFSRs. As shown in Figure 11, the stochastic computing
unit includes three stochastic number generators to compute addition and subtraction in
one clock cycle.
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Figure 10. Employing multiple LFSRs to obtain multiple random numbers at the same time.

Figure 11. Architecture applying multiple LFSR.

4.2. Stochastic Computing Employing Shared LFSRs

Shared LFSRs allow for area efficiency without increasing the number of LFSRs, as
they enable multiple random numbers to be obtained from a single LFSR at the same
time through the use of additional combinational circuits, as shown in Figure 12. The
architecture employing shared LFSRs is depicted in Figure 13.

Figure 12. Employing shared LFSRs to obtain multiple random numbers at the same time.
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Figure 13. Architecture applying shared LFSR.

By utilizing additional combinational circuits, different random numbers are obtained
from a single LFSR, which offers area efficiency compared to using multiple LFSRs. How-
ever, this method is sensitive to error rates due to the correlation between the generated
random numbers.

4.3. Stochastic Computing Employing Parallel LFSR

A parallel LFSR circuit is implemented to generate stochastic sequences with reduced
latency and higher area efficiency. The parallel LFSR circuit shown in Figure 14 uses the first
output value of the LFSR as the input of the next output, and the second output becomes
the next value of the first output [33]. Unlike the shared-LFSR and multiple-LFSR methods,
the circuit utilizes only one LFSR, eliminating the risk of error rate loss due to correlation.
By utilizing only XOR gates, the circuit achieves area efficiency without additional registers.
Since multiple XOR gates are required, the time delay caused by XOR gates should be
considered when implementing the circuit in high-speed frequency systems.

Figure 14. Circuit of 2-stage parallel LFSR.

Figure 15 shows the circuit for implementing a 4-stage parallel LFSR. The eight
bits lfsr_out[0], lfsr_out[1], lfsr_out[2], lfsr_out[3], lfsr_out[4], lfsr_out[5],lfsr_out[6], and
lfsr_out[7] are one 8-bit random number, and bits parallel1[0], parallel1[1], parallel1[2],
parallel1[3], parallel1[4], parallel1[5], parallel1[7] are the next eight bits to be output. In the
same way, a random number generation circuit was implemented by employing parallel
LFSR, as shown in Figure 16.

A general LFSR outputs an arbitrary random number per clock. Therefore, 256 clocks
are required to obtain 256 random numbers through an 8-bit LFSR. In the proposed ar-
chitecture employing the parallel LFSR, as shown in Figure 17, the stochastic sequence is
obtained in one clock cycle. The proposed architecture includes three stochastic number
generators to compute addition and subtraction in one cycle.



Electronics 2023, 12, 1749 10 of 14

Figure 15. Circuit of 4-stage parallel LFSR.

Figure 16. Circuit of multi-stage parallel LFSR.
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Figure 17. The proposed architecture applying parallel LFSRs.

5. Discussion

This section demonstrates the benefits of the proposed architecture, applying parallel
LFSRs in stochastic computing. First, computation time is reduced when applying parallel
LFSR. In the case of an 8-bit operation, the parallel LFSR requires only one clock cycle to
obtain 256 random numbers, and the 256-bit length of a stochastic sequence is generated
in one clock cycle. Thus, applying stochastic computing with parallel LFSR results in
significant gains in computation time.

Second, the stochastic computing architecture with parallel LFSR offers circuit area
efficiency. We compared the area of three types of architecture employing circuits that
generate stochastic sequences in the same amount of time through hardware implemen-
tation. The architecture applying a parallel LFSR had the smallest area to perform the
same computation.

Lastly, when applying a stochastic sequence generated by comparing the size of a
uniform random number between 1 and 255 for 8-bit computation, the probability of
obtaining accurate results is higher. Applying 256 parallel LFSRs for 8-bit computation
allows for obtaining 256 non-overlapping random numbers simultaneously. However,
employing multiple LFSRs or a shared LFSR results in a correlation between each bit of the
stochastic sequence, decreasing the accuracy of the stochastic computation.

We evaluated the 8-bit stochastic computing operator using 8-bit LFSRs on an Altera
MAX10, 10M50SCE144C8G FPGA and analyzed hardware efficiency and an error rate of
add operation as follows.

5.1. Hardware Efficiency

The hardware resource usage of multiple-LFSR-based, shared-LFSR-based, and parallel-
LFSR-based stochastic computing architectures implemented on an FPGA, are compared as
shown in Table 1 and Figure 18a. The architecture based on multiple LFSRs uses the great-
est number of flip-flops. Although a shared-LFSR-based architecture is set to utilize 1/32
flip-flops over a multiple-LFSR-based architecture, it is difficult to obtain a large reduction
in hardware resource usage while maintaining the error rate. In addition, the LUT usage
in the stochastic number generators increases while applying additional combinational
logic compared to the multiple-LFSR-based architecture. Finally, an architecture based on
parallel LFSR reduces 58% of LUTs and 74% of flip-flops compared to the hardware usage
of a multiple-LFSR-based architecture. Compared to the architecture employing shared
LFSRs, the hardware resource usage is reduced to 70% of LUTs and 69% of flip-flops.
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Table 1. Hardware efficiency evaluation.

Multiple Shared Parallel

LUT FF LUT FF LUT FF

Stochastic Number Generator × 3 3277 6529 5281 5407 1141 1183
Stochastic Computation 630 680 697 558 188 223

Binary Converter 787 809 746 768 655 677
Sum 4694 8018 6724 6733 1984 2083

Figure 18. (a) Hardware resource usage applying three different LFSRs in SC (b) Error rate in addition
applying three different LFSRs.

5.2. Error Rate

When a parallel LFSR is applied in 8-bit operations, 256 random numbers are obtained
in one clock cycle, and these random numbers are identical to the outputs generated by
the LFSR with one feedback loop in 256 clock cycles. Therefore, the stochastic sequence
obtained through a parallel LFSR is generated by comparing it with an input binary number
and non-overlapping random numbers 256 times. If the distribution of random numbers is
skewed or has a correlation, it affects the accuracy of the computation. On the other hand,
the random numbers obtained through a shared LFSR are inevitably correlated. Since
the random numbers are manipulated and obtained from the same seed value, there is a
correlation of the stochastic sequence, which affects the accuracy of the operation. While a
shared LFSR offers multiple random numbers from one seed value, the additional logic
has to be carefully considered to manipulate the random output. In addition, a shared
LFSR requires more than one seed value, and the selection of the seed value affects the
computational accuracy [34].

The error rates were compared as shown in Table 2 and Figure 18b by implementing
multiple LFSR-based, shared LFSR-based, and parallel LFSR-based architectures. The
multiple-LFSR-based architecture obtains an average error rate of 17.57% compared to the
exact addition operation. In the case of the architecture based on shared LFSRs, the average
error rate is 0.17% higher than that of a multiple-LFSR-based architecture because of the
correlation between random numbers. In the case of the proposed parallel SC architecture,
the error rate is 6.74%, 6.91% lower than an architecture applying shared LFSRs.

Table 2. Error rate of add operation.

% Multiple Shared Parallel

Average 17.57 17.74 10.83
Standard Deviation 14.42 21.49 9.22
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6. Conclusions

This work demonstrated the advantages of employing a parallel LFSR in stochastic
computing. Since the process of generating the stochastic sequence involves a long delay, this
work addressed the latency issue by applying parallel LFSRs. For 8-bit operations, a typical
SC requires 256 clock cycles to generate the stochastic sequence, while the computation time
was reduced to 1 cycle without loss of accuracy. In addition, among the three architectures,
multi-LFSR-based, shared-LFSR-based, and parallel-LFSR-based architectures, the proposed
stochastic computing architecture employing parallel LFSR reduced combinational circuits
by up to 70% and sequential circuits by up to 74% compared to a multi-LFSR-based and
shared- LFSR-based architecture. The average error rate of the addition operation was
10.83%, which was 6.91% lower than the shared-LFSR-based architecture.

The proposed parallel SC architecture was designed in the Verilog HDL and validated
through RTL simulation and FPGA implementation. Since the computation time was
reduced without loss of accuracy or area efficiency, the proposed parallel architecture
highlights the potential of stochastic computing for computationally intensive applications
such as image processing or convolutional neural networks.
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