
 

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

A Local Interconnect Network Controller for 
Resource-Constrained Automotive Devices 

Kwonneung Cho,  Hyun Woo Oh, Jeongeun Kim, Young Woo Jeong, and Seung Eun Lee*  
Department of Electronic Engineering  

Seoul National University of Science and Technology  
Seoul, Republic of Korea 

{chokwonneung, ohhyunwoo, kimjeongeun, jeongyoungwoo, *seung.lee}@seoultech.ac.kr   

 

Abstract— As the amount of data for automotive systems is 

increased, a dedicated communication controller for in-vehicle 

networks is required. This paper proposes a local interconnect 

network (LIN) controller for resource-constrained devices. The 

designed LIN controller efficiently reduces the workload of 

target devices by processing the LIN frame header, data 

response, and protocol errors. To demonstrate the feasibility of 

design, a Cortex-M0 is employed as a main processor and 

connected to the LIN controller. We implemented a LIN node by 

programming the processor, and the functionality of LIN 

controller was verified with a LIN frame analyzer and hardware 

scope. In addition, we analyzed the affection of communication 

loads on the processor and evaluated the benefits of LIN 

controller. 

Keywords—LIN controller, automotive system, Cortex-M0, 

resource-constrained device 

I. INTRODUCTION 

With the development of intelligent and self-driving 
vehicles, a lot of electronic control units (ECUs) are mounted 
on a vehicle, and the traffic of in-vehicle networks is increased 
[1-2]. Local interconnect network (LIN) is widely employed as 
an in-vehicle network with controller area network (CAN) and 
CAN with flexible data rate (CAN-FD) [3]. As the CAN and 
CAN-FD protocol provide the high-speed data rate with 
communication reliability, CAN and CAN-FD have been 
applied to the networks where immediate response and stability 
are essential [4]. On the other hand, LIN is suitable for 
resource-constrained devices since LIN provides a low-cost 
implementation of in-vehicle network with a single communi-
cation bus and relatively slow data rate [5]. 

The LIN communication is implemented by processing the 
LIN frame header and responding to the header as shown in 
Fig. 1. The LIN frame is shared with all LIN nodes through the 
LIN bus, and the LIN nodes need to identify the validity of the 
frame to respond. For identifying the valid frame, two 
sequences are required. One is to compare the length of  break 
field and sync field, and the other is to check the frame ID and 
its parity in the PID field. 

As described in Fig. 1, the LIN frame header maintains 
dominant value for 13 nominal bit times in the break field, and 
repeats dominant and recessive value for every bit time in the 
sync field. The relation of the length between the break field 
and sync field is critical to ensure the validity of LIN frame 
header. Since the tendency of LIN signal which appears in the 
break field and sync field can also appear in the data field, the 
break field has to maintain dominant value at least 11-bit times 
[6]. Therefore, a LIN node needs to compare the length of 

break and sync field in order to identify a valid break-sync pair. 
In addition, as the publishers and subscribers of the LIN 
responses are pre-defined with the frame ID, a LIN node needs 
to check the frame ID and its parity when a valid break-sync 
pair is received.  

Unfortunately, processing the LIN frames with software 
causes a lot of workload to the resource-constrained devices. 
The main processors of the devices require peripheral controls 
such as timer or GPIO, and need to perform interrupt service 
routine (ISR) frequently to process the LIN frame. Since the 
LIN frames are transferred periodically, the loads of LIN 
communication lead to performance degradation. Therefore, 
employing a dedicated hardware controller for LIN communi-
cation is required to process increasing data in the resource-
constrained automotive devices. 

In this paper, a hardware LIN controller for resource-
constrained automotive devices is proposed. The designed LIN 
controller automatically detects a valid break-sync pair, data 
rate of LIN frame, and all sources of communication error. As 
a result, the main processor is able to perform LIN communi-
cation with only read or write configuration registers in ISR. 
These simplified operations efficiently reduce the workload of 
the main processor. To evaluate the benefits of the designed 
LIN controller, a Cortex-M0 was employed as a main 
processor, and connected to the LIN controller through 
advanced high-performance bus (AHB). The performance of 
LIN controller is evaluated by measuring the benchmark score 
of the processor and analyzing the affection of LIN communi-
cation. The functionality of LIN controller was verified with a 
LIN frame analyzer tool and hardware scope. Additionally, the 
feasibility of LIN controller was demonstrated by 
communicating with an NXP automotive development board. 

 

Fig. 1. LIN network and frame format  

978-1-6654-4154-4/22/$31.00 ©2022 IEEE

2022 IEEE International Conference on Consumer Electronics
(ICCE)

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 C

on
su

m
er

 E
le

ct
ro

ni
cs

 (I
CC

E)
 |

 9
78

-1
-6

65
4-

41
54

-4
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
IC

CE
53

29
6.

20
22

.9
73

04
93

Authorized licensed use limited to: University of Southern California. Downloaded on February 01,2025 at 09:33:11 UTC from IEEE Xplore.  Restrictions apply. 



 

 

II. ARCHITECTURE OF LIN CONTROLLER  

Structural design is applied to the LIN controller and the 
overall architecture is presented in Fig. 2. The AHB slave 
interface, register bank, framer, receiver, and transmitter are 
included in the LIN controller. The LIN controller receives the 
LIN bus signal through the RX filter. The RX filter prevents 
the noise of LIN bus by blocking rapid changes of signal. The 
RX filter provides flexible noise filtering by changing the 
filtering time according to the operating frequency of main 
processor. The header receiver detects a valid break-sync pair, 
and calculates communication data rate, and identifies a sleep 
state of LIN bus by checking the length of LIN bus signal. 
When a valid header is received, the header receiver triggers an 
interrupt request and informs the calculated bit time of LIN 
frame to the data receiver and transmitter. The data receiver 
and transmitter perform universal asynchronous receiver 
transmitter (UART) operations with the received bit time scale 
to response to the data field. The framer controls the receiver 
and transmitter for response to the data field. The frame format 
is constructed with the responded data. Additionally, the 
checksum calculation, detecting bit collision, and go-to-sleep 
command are processed in the framer.  

A main processor accesses the register bank through the 
AHB slave interface, and controls the LIN controller by 
reading or writing the registers. The IRQ vector register 
informs the interrupt sources that include the information of 
receiving header, error occurrence and end of transfer. When a 
valid LIN header is received and the interrupt signal is 
triggered, the main processor reads the frame ID register and 
writes the control register to decide whether to respond or 
ignore the received frame. The main processor is able to 
monitor the LIN communication process by reading the status 
register and bit time register. The pre-scale register sets scale 
counters for the RX filter and internal counter in the header 
receiver. The LIN controller supports operating frequency from 
2MHz to 64MHz through the pre-scale register.  

III. IMPLEMENTATION AND VERIFICATION 

The proposed LIN controller was designed with Verilog 
HDL and simulated with Altera-Modelsim and Synopsys-VCS. 
In order to demonstrate the functionality of LIN controller, a 
system-on-chip (SoC) design which includes a Cortex-M0 core, 
LIN controller, on-chip memories, system bus, and peripherals 

was implemented on Altera-Cyclone III FPGA. A LIN node 
was realized with the SoC design by programming the Cortex-
M0. The Cortex-M0 core accesses the designed LIN controller 
through AHB, and controls the LIN controller to perform LIN 
communication.  

Fig. 3 shows the top-level architecture of SoC design and 
prototype PCB board. The PCB board contains LIN PHY chip 
and 12V power port to provide LIN physical layer. In the 
Altera-Cyclone III FPGA, the designed LIN controller utilizes 
366 look-up tables (LUTs) and 404 flip-flops (FFs) of the 
FPGA resource. The amount of resources for LIN controller 
occupies 6.55% LUTs and 16.69% FFs of the SoC design. 

In order to verify the LIN controller, we set up the 
verification environment as shown in Fig. 4. Vector-VN1630A 
and PicoScope-5000 were employed as a LIN interface and 
hardware scope to analyze LIN frames and physical layer. 
Vector-Canoe software tool provides virtual LIN nodes with a 
standard LIN description file (LDF) that contains information 
of LIN nodes and network schedules. We constructed a LIN 
network with the Canoe virtual nodes, the implemented LIN 
nodes with the FPGA board, and the test board. NXP-
DEVKIT-S12VR automotive development board which 
supports LIN physical layer and software library was employed 
for the test board. The LIN controller successfully detects valid 
LIN headers and responses to the headers without any missing 
frames. The captured waveform is presented in Fig. 4.  

 

Fig. 2. Architecture of LIN controller  

Fig. 3. Implementation of the SoC design on FPGA  

 

Fig. 4. Verification environment and captured waveform  

Authorized licensed use limited to: University of Southern California. Downloaded on February 01,2025 at 09:33:11 UTC from IEEE Xplore.  Restrictions apply. 



 

 

The functionality of LIN controller was verified by the 
experiments. The LIN controller successfully provides 2Kbps 
to 20Kbps data rate in the operating frequency range of 2MHz 
to 64MHz. The data rate satisfies the specification of LIN 2.2A, 
and the range of operating frequency is suitable for resource-
constrained devices which operate with low speed [6]. Further 
experiments for communication error handlings such as parity 
error, bit collision, frame error, and checksum error are 
conducted. When an error occurs, the LIN controller informs 
the main processor of the corresponding error source, and the 
main processor ignores or stops the current frame. 

IV. RESULT AND DISCUSSION 

A. Area efficiency 

In order to analyze the area efficiency of LIN controller, the 
number of logic cells is measured by synthesizing the SoC 
design with Cyclone III FPGA, 130nm CMOS process and 
180nm  CMOS process. Table I indicates the synthesis results. 
The logic cells of FPGA contain resources of LUTs and FFs, 
and the logic cells of CMOS process are calculated based on 2-
input NAND gate. Compared to the Cortex-M0 core, the LIN 
controller occupies 13.46% of FPGA resources, 21.05% of 
logic cells in 130nm process and 22.62% of logic cells in 
180nm process. Considering that the Cortex-M0 core is 
optimized for resource-constrained devices, the proposed LIN 
controller enables the main processor to implement LIN 
communication with area efficiency. The peripherals in Table I 
include a UART, timer and GPIO which are generally used to 
implement a software LIN node. Although the LIN controller 
utilizes more resources than the peripherals, additional area 
benefits are gained since the LIN controller reduces the 
software complexity of main processor, achieving memory 
efficiency. 

B. Performance analysis 

 To demonstrate the benefits of LIN controller, the 
performance of the SoC design is evaluated by running 
Dhrystone 2.1 benchmark with the load of LIN communication. 
In the benchmark test, the requests for LIN communication 
affect the performance of main processor. However, as the LIN 
controller reduces the workload of main processor, the benefit 

of LIN controller is confirmed by comparing the benchmark 
scores with the original scores which are measured without any 
external interrupts. Table II presents the summary of Dhrystone 
benchmark. The benchmark results without LIN communi-
cation only depend on the performance of main processor, and 
27.736DMIPS was measured at 50MHz clock frequency. In the 
benchmark test with LIN communication, a LIN frame is 
transferred at every 5ms with 19.2kbps data rate. The LIN 
frame requests interrupt the operation of main processor. 
However, the benchmark score was measured at 27.723DMIPS. 
Since the LIN controller processes the LIN frame with 
dedicated hardware, only 0.05% performance degradation is 
occurred. Therefore, the proposed LIN controller demonstrated 
the advantage of reducing the workload of main processor for 
LIN communication. 

V. CONCLUTION 

In this paper, a LIN controller for resource-constrained 
automotive devices is proposed to deal with the increasing data 
of in-vehicle network. As resource-constrained devices have 
restricted performance and resources, it is important to 
efficiently reduce the communication loads. The proposed LIN 
controller meets the goal by processing the LIN frame with 
compact resources. The LIN controller was designed with 
Verilog-HDL and implemented on Altera-Cyclone III FPGA. 
The functionality of LIN controller was verified by employing 
the Vector-Canoe software analyzer, Vector-VN1630A 
interface, PicoScope-5000 hardware scope, and NXP 
automotive development board. In order to demonstrate the 
benefits of LIN controller, an SoC design which includes the 
Cortex-M0 core, LIN controller, and peripherals is 
implemented. As a result, the area and performance benefits of 
LIN controller were demonstrated by experiments. 

ACKNOWLEDGMENT 

This paper was supported by Korea Institute for 
Advancement of Technology(KIAT) grant funded by the 
Korea Government(MOTIE) (P0017011, HRD Program for 
Industrial Innovation) 

REFERENCES 

[1] C. J. Taek, J. Jun Yun, M. J. Hwan and M. Jung, "Implementation of a 
binary translation for improving ECU performance," IEEE Inter-national 
Conference on Consumer Electronics (ICCE), 2019, pp. 1-3. 

[2] M. Z. MANIC, M. Z. PONOS, M. Z. BJELICA and D. SAMARDZIJA, 
"Proposal for graphics sharing in a mixed criticality automotive digital 
cockpit," IEEE International Conference on Consumer Electronics 
(ICCE), 2020, pp. 1-4. 

[3] A. Srivastava and D. Adhikari, "CAN-LIN bridge for driver assistance 
and passenger comfort an optimized resource approach," 2017 2nd IEEE 
International Conference on Recent Trends in Electronics, Information 
& Communication Technology (RTEICT), 2017, pp. 506-510. 

[4] S. Jin, J. -G. Chung and Y. Xu, "Signature-Based Intrusion Detection 
System (IDS) for In-Vehicle CAN Bus Network," IEEE International 
Symposium on Circuits and Systems (ISCAS), 2021, pp. 1-5. 

[5] Y. Lee, E. Kang, C. Hiler, Y. Park and J. Choi, "EMI Effects on 
Electrical Parameters in Fiber Optic Converters for LIN (Local 
Interconnect Network) Communication," International Symposium on 
Electro-magnetic Compatibility - EMC EUROPE, 2020, pp. 1-6. 

[6] LIN Specification Package Revision 2.2A, Dec, 2010. 

TABLE I.  LOGIC CELL UTILIZATION 

Module 
Logic Cells 

Cyclone III FPGA CMOS 130nm CMOS 180nm 

LIN Controller 770 5,319 5,301 

Cortex-M0 5,719 25,269 23,435 

Peripherals 698 4,328 4,347 

 

TABLE II.  DHRYSTONE 2.1 BENCHMARK SUMMARY 

Entity 
Value 

Result without LIN Result with LIN 

RUN Count 151,552 151,552 

Execution Time 3.109s 3.111s 

DMIPS 27.736 27.723 

DMIPS / MHz 0.555 0.554 

 

Authorized licensed use limited to: University of Southern California. Downloaded on February 01,2025 at 09:33:11 UTC from IEEE Xplore.  Restrictions apply. 


